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Abstract. Serious games, as well as entertainment games, often employ
a scripted dialogue for player interaction with a virtual character. In
our serious game Communicate, a domain expert develops a structured,
scripted scenario as a sequence of potential interactions in an author-
ing tool. Communicate is widely used and several domain experts have
already developed over a thousand scenarios. In the original version of
Communicate, a student ‘navigates’ a dialogue with a virtual character
by clicking one of the multiple statement options at a step of a scenario.
Open text response often requires more complex thinking from a student.
In this paper we explore ways to handle open text input from a student
at a step of a scenario. Our goal is to match open text to scripted state-
ments using a Natural Language Processing (NLP) method and explore
mechanisms to handle matched and unmatched input.

1 Introduction

Communication skills are best learned through practice, in role play or with
a simulated patient [2]. In Communicate [6], a serious game for training com-
munication skills, a student practices a communication skills dialogue with a
virtual character, see Fig. 1. Communicate is used in multiple domains to prac-
tice diverse communication skills and protocols, including assertiveness training,
breaking bad news, visit to a pharmacy and collaboration.

Fig. 1. Communicate game

Authoring content in an Intelligent tu-
toring system often requires significant ef-
fort [1], and authoring tool usability is often
at the expense of expressiveness [13]. Commu-
nicate provides an authoring tool that com-
bines expressive dialogue constructs with ease
of use [7] and runs in a web browser. We
release a dialogue scenario editor authoring
tool as open-source as part of an EU project

RAGE (Realising an Applied Gaming Ecosystem), see gamecomponents.eu. A
communication skills teacher, usually a non-programmer, authors a scenario. A
scenario is a sequence of interleaved subjects, where each subject is a directed
acyclic graph consisting of a sequence of statements alternating between a vir-
tual character and a player. A learning goal is typically encoded as a parameter



in a scenario. An author assigns values to this parameter, typically an integer,
per player statement option. An author also assigns an emotion to a player
statement.

Communicate [6] presents statement options to a player at a step of a com-
munication scenario, see Fig. 1. Choosing a player statement elicits the emotion
assigned to the statement from a virtual character. At the end of a simulation,
a player gets a score depending on her statement choices during the simulation.
Martinez et al. [11] review cumulative research on the cognitive demand of multi-
ple choice versus constructed response test item formats. Test item formats pose
trade offs in cognitive demand, psychometric characteristics, and costs of admin-
istration/scoring. Multiple choice items often elicit low level cognitive processing
from a student but are deterministic and easy to score. Open text response of-
ten requires complex thinking, but is more difficult to score. Students consider
multiple choice fair, but they pay more attention to content when preparing for
an open response test.

Our goal is to enhance Communicate by offering a student the possibility to
enter open text at a step of a scenario. Adding an input box for a player to enter
open text to our simulation is trivial, the challenge is to process this open text.
To process open text, we use Natural Language Processing (NLP) techniques.
In a previous experiment we gathered student open text input for a scenario and
created a golden dataset on which we ran a range of open source NLP meth-
ods [9]. NLP methods that use local information (e.g. string kernels) give better
matching results than NLP methods that use a generic corpora (e.g. semantic
matching using latent semantic analysis, or paraphrasing). Even with a sizeable
dataset, the results of NLP methods are not entirely accurate: NLP methods of-
ten require very large datasets to train a model [15]. It is unlikely we will obtain
large datasets for all scenarios in Communicate: since authors can easily create
and/or modify a scenario, we have over a thousand (variants of) scenarios about
different communication protocols in different contexts. Our main contribution
in this paper is to introduce open text input without significant additional ef-
fort from an author and/or extensive data gathering for a scenario, which is
infeasible given the number of scenarios, and to explore mechanisms to handle
matched and unmatched input. There is a wider implication for entertainment
and learning games using scripted dialogues.

Realdon et al. [14] suggests a scaffolding structure in a learning environment
to give a student an opportunity to learn. Given the limitations mentioned in the
previous paragraph, our approach is to use an NLP method to match a student
open text input and use scaffolding to handle matched and unmatched input.
This NLP method takes a scripted scenario as input to build a scenario specific
corpus [8]. For matching an open input text, this method uses the scenario spe-
cific corpus and returns a match score per scripted statement at a step of the
simulation. We established a threshold score for the NLP method [9] and if all
match-scores are below this threshold, we consider an open text input as un-
matched. If at least one match-score is above the threshold, we consider an open
text input as matched. Fowler and Barker [3] find that highlighting improves re-



tention of material and to handle matched input, we highlight the best matching
statement. To handle unmatched input, we look at Intelligent Tutoring Systems
(ITS). Van Lehn [16] studies common behaviour of ITSs and recommends giving
a hint for a next step when a student needs a hint. He recommends sequencing
hints, starting with encouraging a student to think herself, and after that giving
more detail about a next step. Our research questions (RQs) are: Can we handle
matched input by highlighting a statement and unmatched input by providing
a sequence of hints? We introduce variations in blended teaching sessions to
answer our research questions.

This paper is organised as follows. Section 2 discusses related work. Section 3
describes our method to answer the research questions. Section 4 discusses results
and Section 5 presents conclusions and future work.

2 Related work

This section gives related work on introducing natural language input in a learn-
ing environment or serious game. We look at different approaches to introduce
open text input.

Autotutor [4] is a well known tutoring environment using natural language
technologies. In AutoTutor, a student answers a question by means of a para-
graph (approximately seven sentences) of text. Autotutor provides feedback on
this text, and engages in a turn taking dialogue until a student arrives at a num-
ber of correct sentences. To handle open text, AutoTutor uses NLP methods
like latent semantic analysis and speech act classifiers; techniques that focus on
the general meaning of the input and functional purpose of an expression but
also require a large dataset. It is unclear how AutoTutor processes unmatched
input that does not fit any classifier in the script. The time and cost of authoring
a script is considerable and requires extensive collaboration between computer
scientists, cognitive psychologists and content experts.

Lessard [10] investigates the design of a natural language game conversation
(built in ChatScript) based on experience from three digital games primarily
involving a dialogue between a player and a virtual character. An NLP inter-
action provides creative conversational play, role playing, content contribution
and non-linear conversations in these games. The drawbacks mentioned are: a
player expectation that the system understands and responds like a person, leaky
fictional coherence, unrestricted input, i.e. a player can say anything and a vir-
tual character cannot have a response for everything and ‘amnesia’ specific to a
chatbot that cannot ‘remember’ previous utterances.

Higashinaka et al [5] conduct an experiment to collect question answer pairs
from users to create a chatbot character with consistent personality. The authors
use a text engine to index the collected question answer pairs. They develop a
chatbot that takes an open text input as a query to retrieve the most rele-
vant question and responds with the pair answer. They use different retrieval
methods and perform a ‘subjective’ evaluation to rate an answer in terms of nat-
uralness and consistency. Higashinaka et al. find that the chatbot character has
a consistent personality but the text retrieval methods are not entirely accurate.



(In)accuracy of an NLP method is related to our work; we use scaffolding to
handle an open text input.

Min et al [12] present a multimodal framework that predicts breakdowns
in a student conversation with a pedagogical agent. The authors characterise a
dialogue breakdown as a situation in which an agent misinterprets a student ut-
terance and responds incorrectly. The framework incorporates natural language,
eye gaze, student gender, and task state. Min et al. investigate this framework
in a study of 92 middle school students in a game based learning environment.
They find that incorporating eye gaze achieves high predictive accuracy for di-
alogue breakdown. We give a sequence of hints to a player when an open text
input cannot be matched to a scripted statement.

In summary, there is a diversity of methods to introduce open text input in
serious games and learning environments. Methods range from collecting and
classifying input, semantic matching, chatbots, and agent technology. In our
approach we use a scripted scenario as the basis, which ensures consistency,
fictional coherence and control in utterances. We use an NLP method that takes
a scripted scenario as input to build a scenario specific corpus [8]. We match
an open text input using this corpus and use scaffolding to handle matched and
unmatched input.

3 Method
To answer our research question, we introduce variations in our teaching inter-
vention. At our University, final year computer science students learn to work
together in a software project team. During the project we provide a communica-
tion skills blended learning session per team consisting of 10 to 12 students each.
In this session, students play a scenario about collaboration. A student needs to
converse with a team mate (virtual character) who has not followed quality pro-
cedures (integration tests). In a session, an instructor introduces Communicate,
students play the scenario, the instructor explains the communication protocol
that forms the basis of the scenario, and there is a plenary discussion. To enable
open text, we provide a text box at each step of a scenario, see Fig. 2.

Fig. 2. Open text input box

We added hints to the Collaboration sce-
nario that we use in the sessions. For example,
we added the hint ‘Try to give feedback about
working together: his code does not work with
other components, so you know that he has
not performed integration tests’ to the subject
‘Express’, and we added the hint ‘verbalise be-
haviour’ to the player statement, ‘You pushed
code that does not work with other compo-
nents’.

Our research method is to vary the aspect
under consideration. For highlighting our treatment is to let a student match her
open text input to a statement option with and without highlighting in separate
rounds of sessions respectively. For hints, the treatment is to divide the students
randomly into an experimental and control group, where within the same session,



a student from the experimental group gets a sequence of hints and the control
group get no hints. The design of the sessions in the semester of fall-winter 2018
is shown schematically in Fig. 3.

Fig. 3. Setup within sessions of fall-winter 2018

A student fills in an open input text (see Fig. 2, for example ‘Ja hoor, met jou
ook?’) and the NLP match method takes this open input text ‘a’ and returns a
match score per scripted statement option at a step of the scenario. In a previous
experiment [9], we empirically determined a baseline threshold value for a match.
If at least one statement option has a match score above the threshold value
of the match method, we call that an mmSOM (match method some option
matches). If a match method detects at least one mmSOM (∃ arrow upwards),
Communicate displays all scripted statement options and highlights the best
mmSOM match, see Fig. 4, in this example ‘Jazeker, met jou ook?’.

Fig. 4. Highlighted best match

Communicate asks a student to match the
closest option to her open input text ‘a’ from
the displayed statement options. If a student
selects one of the statement options, we log
for statistical comparison (see Section 4) as
‘pSOM1’ (player some option matches). We
also log whether a student selects the high-
lighted option or another option. A student
also gets an option to choose ‘No response
matches’ (Er is geen vergelijkbaar antwoord).

If a student chooses this option, we log this as ‘pNOM1’ (player no option



matches). If a student finds that no option matches, Communicate asks the
student to select one of the scripted statement options to continue the scenario,
shown in Fig. 4 as the dotted line from the upper left part in round1 to the lower
right part of round1.

If all NLP match method scores for an input statement ‘a’ are below the
threshold value (∀ arrow downwards) of the match method, we say that the
open text input is unmatched at that step in the scenario. Note that an open
text input is either matched or unmatched using the NLP method. We log an
unmatched input as mmNOM (match method no option matches). If the student
is in the experimental group, Communicate gives a first hint and prompts to
try again. This hint is a subject hint. If the student is in the control group,
Communicate gives no hint and prompts a student to try again. A student
enters a new response ‘b’, which is matched to obtain an mmSOM or mmNOM.
In case the match method finds an mmSOM, we process it in the same way as
described in the paragraph above. In case a match method detects an mmNOM
again, Communicate displays the hints for all the statement options at that
step, e.g: Try to: verbalise behaviour; refer to agreement; ask a question for the
experimental group. For the control group Communicate again gives no hint and
prompts a student to try again. A student enters a new response ‘c’, which again
is matched to obtain an mmSOM or mmNOM. In case of an mmSOM, we again
process as described above. In case of an mmNOM, Communicate asks a student
to select one of the scripted statement options to continue the scenario.

For the treatment with no highlighting, we conduct a 2nd round of sessions
with the students, three weeks after the 1st round. For all students who agreed in
their user profile to store their open text input, Communicate presents a student
her first playthrough from the 1st round. At each step of the playthrough, the
first open text a student entered (the string ‘a’) in the 1st round is displayed,
and Communicate displays all the statement options available at that step of
the scenario and the special option No response matches. No statements are
highlighted unlike in round1. There are a total of 210 open text input statements
that students match. Communicate asks a student to match her input (string ‘a’)
to an option, and we log if a student matches to a scripted option or if she chooses
No response matches. Communicate displays the match the student made in the
first round and continues with the next entered input from her playthrough from
the 1st round until the end of the playthrough. Other students, who did not agree
to store their open text input, played the scenario in multiple choice format.

4 Results and discussion

In the fall-winter semester 2018, there were a total of 52 students in five project
teams, who played the same scenario in a modified version of Communicate
where they typed in open text responses. Our research question is whether we
can handle matched and unmatched open text input using highlighting and hints
respectively. In the majority of open text input in round1 (389 statements out
of 503 statements, 77.34%), the match method matched with at least one of
the scripted statements. For the remaining statements (114 of 503 statements,



22.66%) for which no match was found: Communicate showed a hint to stu-
dents in the experimental group for approximately half the unmatched cases (56
statements, 11.13%) versus no hint in the control group (58 statements, 11.53%).

RQ: Can we handle matched input by highlighting a statement?
We compare the match choice from a student in the first round (best matched

statement highlighted) versus the second round (no statement highlighted). In
the first round, for an mmSOM, a player gets to match her open text input to
one of the scripted statements while the best match is highlighted, see Fig. 4.
She can choose either the highlighted statement, another statement, or No re-
sponse matches. We analyse the different combination cases that occur. We dis-
cuss how a simulation without a highlighting scaffolding (referred as automatic
match) would look like. We also gather insight into NLP matching versus student
matching. All percentages in this subsection are from a total of 210 open text
input statements that students match in round 2, see Section 3. The comparison
between round1 (highlighting ) versus round2 (no highlighting) is summarised
in Table 1.

%
Highlighting effect cases 09.05%
True Positive (TP) 17.14%
True Negative (TN) 07.14%
False Negative (FN) 16.19%
False Positive (FP) 01.90%
NLP match differs from
student match

20.48%

Student chooses inconsistently 28.10%

Table 1. Highlighting comparison table

Does highlighting increase the
chance of matching? We argue that
highlighting had an effect when a stu-
dent matches the highlighted state-
ment in round1 and to a different
statement; or to No response matches
in round2. This occurs in 16 (7.62%)
and 3 (1.43%) statements respec-
tively, total 9.05% of the statements
(210) matched in the 2nd round,
shown in the first row of Table 1.

When a player matches her open
input with the match method highlighted statement choice in round1 and chooses
the same statement (unhighlighted) in round2, we call this a true positive (TP),
36 statements (17.14%) are TPs, shown in the second row of Table 1. When
a player chooses No response matches in round2 and the match method also
detects no match (mmNOM) in round1, we call this true negative (TN), 15
statements (7.14%) are TN, shown in the third row of Table 1. A TN open text
input might be a signal of a missing scripted player statement option at a step
of a scenario. In an automatic match, Communicate response would be accurate
in these (TP and TN) cases. When a student matches her input to a statement
in round2 but the match method detects no match in round1, we call this a false
negative (FN, 34 statements, 16.19%). In an automatic match, Communicate
would incorrectly provide a hint for an FN. When a student chooses No response
matches in both rounds but the match method finds at least one match value
above the threshold, we call this a false positive (FP, only in 4 statements,
1.90%). For an FP in an automatic match, a virtual character would provide a
response, but Communicate should have given a hint.



When the NLP match method matches differently than a student statement
match in both rounds (43 statements out of 210, 20.48%), in an automatic match
a virtual character would provide a different response than possibly intended
by the scenario author. E.g. a student entered, ‘De code die je gisteren hebt
gepushed conflicteert’ for which the NLP method has the best match score to
‘Ik wil het even met jou hebben over je werk van gisteren’ whereas the student
matches to ‘Je code werkte niet samen met het geheel’. In this example, the NLP
choice is not incorrect, however these statements are opportunities to examine
if we can improve the NLP match method further.

There are cases when a student chooses inconsistently: when a student matches
to an unhighlighted statement in round1 but chooses a different statement in
round2 (43 statements out of 210, 20.48%), coincidentally the same amount but
other statements than the statements that the NLP method matches differently
than a student. We examined these statements: sometimes an input was a mix
of two scripted statements or perhaps the statement options seemed similar to a
student. Another inconsistency is when a student chooses No response matches
in one of the rounds and an unhighlighted option in the other round (16 state-
ments, 7.62%). In automatic processing these cases (total 28.10%, shown in the
last row of Table 1), either a virtual character’s response or a hint would be
somewhat correct.

To answer our research question: using highlighting for matched open text
input is not effective. The total of absolute errors in matching: false negative
and false positive (18.09%) is limited and we argue on the basis of our results
that for a matched open input, Communicate should not use highlighting, and
automatically continue with the simulation.

RQ: Can we handle unmatched input by providing a sequence of
hints? We evaluate if giving a hint in the experimental group leads more often
to a matched input than in the control group.

Control
group

Hint
group

Initial unmatched
statements (mmNOM)

58 56

Observed matches after
subject hint

24 28

Expected matches after
subject hint

26.4561 25.5439

Unmatched statements
after subject hint

34 28

Observed matches after
statement hints

16 9

Expected matches after
statement hints

13.7097 11.2903

Table 2. Hint evaluation table

We perform a chi-distribution test,
which compares the observed cases
versus expected values, see Table
2. The experimental (hint) group
matches slightly better than expected
after a subject hint and slightly worse
than expected after a statement hint.
The control group matches the other
way around, slightly worse than ex-
pected after the first prompt to try
again and slightly better than ex-
pected after the second prompt to try
again. The differences are not signifi-
cant (p-value 0.2521), and the reasons
could be multifold. We paid attention
while scripting the hints that a hint
would not result in a match by copy-



pasting. Perhaps a student tried the same words as in a hint and it could be that
a student is perhaps frustrated by having to type something again. The match
method is also not entirely accurate, perhaps a hint is similar to a student in-
put which was incorrectly unmatched. To answer our research question, giving a
hint for unmatched open text input has no significant impact in our experiment.
We recommend to not give hints, but instead to display the available statement
options immediately to allow a player to continue a simulation.

5 Conclusions and future work

In this paper we take steps to enhance our learning environment from a mul-
tiple choice player input to open text player input. Enabling player open text
input in our learning environment leads to more student interaction. Scaffolding,
highlighting matched open text input and giving hints for unmatched input, has
only a limited effect in Communicate. This result can perhaps be generalised for
serious games that use a dialogue graph, want to incorporate open text input
and have no extensive dataset. Our experiment results in a dataset of open text
matched to a statement annotated by a student herself. The total of absolute
matching errors by our NLP method on this dataset is small. The dataset pro-
vides a good distribution of student open text with corresponding matching and
can be used by other NLP methods to improve match accuracy.

For future work, we recommend and plan to have guided sessions with min-
imal scaffolding, where in case of matched input a simulation continues as if a
virtual character has understood the input (i.e. no extra highlight step to confirm
a match) and in case of unmatched input, we present the available statement
options to a player to select and continue a dialogue. This setup will involve no
extra effort for a scenario author.
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