A framework for polytypic programming on terms,
with an application to rewriting

Patrik Jansson
Computing Science, Chalmers University of Technology, Sweden
patrikj@cs.chalmers.se, http://www.cs.chalmers.se/ patrikj/

Johan Jeuring
Computer Science, Utrecht University, the Netherlands
johanj@cs.uu.nl, http://www.cs.uu.nl/~johanj/

Abstract

Given any value of a datatype (an algebra of terms), and rules to rewrite values of that
datatype, we want a function that rewrites the value to normal form if the value is normal-
izable. This paper develops a polytypic rewriting function that uses the parallel innermost
rewriting strategy. It improves upon our earlier work on polytypic rewriting in two funda-
mental ways. Firstly, the rewriting function uses a term interface that hides the polytypic
part from the rest of the program. The term interface is a framework for polytypic pro-
gramming on terms. This implies that the rewriting function is independent of the particular
implementation of polytypism. We give several functions and laws on terms, which simplify
calculating with programs. Secondly, the rewriting function is developed together with a cor-
rectness proof. We just present the result of the correctness proof, the proof itself is published
elsewhere.

1 Introduction

A term rewriting system is an algebra (a datatype of terms) together with a set of rewrite rules.
The rewrite rules describe how to rewrite the terms of the algebra.

A rewrite rule is a pair (lhs, rhs) of terms containing variables with the interpretation that any
term that matches the left hand side (lhs) may be rewritten to the right hand side (rhs) with the
variables replaced by the matches from the left hand side. The code in this paper is expressed in
the functional programming language Haskell 98 [10].

1.1 An example rewriting system

An example of a term datatype is the type Ezpr:

data Fxpr = EVarInt| Z | S Expr | Ezpr :+: Expr | Ezpr :x: Expr
type Rulet = (t,t)
plusZero : Rule Expr
plusZero = (z:+:Z,x)
where z = EVar 0

For example, with the rule plusZero the left hand side z :+: Z matches the expression S Z :+: Z
with the substitution {z — S Z}. Thus the rewritten term is the right hand side z after the

substitution is applied: S Z. To introduce the notation we express this in Haskell syntax: the
following expression evaluates to True.

let (lhs,rhs) = plusZero
Just s match lhs (S Z :+: Z)
in appSubst s rhs == S 7

The functions involved are the following: (for ¢ = FExpr)

appSubst i Term t = Subt — (t = t)
match i Term t = t — t — Maybe (Sub t)
(==) i Term t = t — t — Bool

Function appSubst takes a substitution and a term, and applies the substitution to the term.
The type Fzpr is an instance of a type class for Terms defined in Section 2.1. The definitions
of appSubst and the type constructor for Substitutions are given in Section 3.1. Function match
(defined in Section 3.2) takes a term containing variables, and a term without variables, and
returns Just a substitution s if the terms can be matched by means of s, and Nothing otherwise.
The term equality test, (==), is defined in Section 2.2.

A rule set is a collection of rules, and a rule set matches a term if at least one of the rules matches
that term. To keep the system deterministic, even when more than one rule matches, we order
the rules and always use the first match. In practice this means that our rule set is a rule list.

type Rules t = [Rule t]
exprrules : Rules Expr
exprrules = [plusZero, plusSuce, timesZero, timesSucc]
where plusZero = (z:+:Z,x)
plusSucc = (z:+: Sy,S(:I: +:y))
timesZero = (x % Z,7)
timesSucc = (z % Sy, (z:xy):+: 1)
(z,y) = (F Var 0, EVar 1)

Function rewrite (defined in Section 4.2) rewrites a term to normal form by repeatedly applying
rules from a rule list:

rewrite :: Term t = Rulest >t — t

Because the rule list exprrules is normalizing, function rewrite will rewrite any term of type Ezpr
to normal form. In general, rewrite rs t terminates if and only if the term ¢ is normalizing with
respect to the rule list rs.

1.2 Polytypic rewriting and the term interface

The types in the previous subsection already suggest that functions like rewrite and match are
defined on an abstract type (class) of terms. Any regular datatype such as Fzpr can be made an
instance of the Term class, and it follows that functions rewrite and match are polytypic.

This paper develops a polytypic rewriting function that uses the parallel innermost rewriting
strategy. We have chosen the parallel innermost rewriting strategy because this lets us transform
the rewriting function into an asymptotically optimal solution. The results in this paper improve
upon our earlier work on polytypic rewriting [8] in two fundamental ways.

Firstly, the program uses a term interface that hides the polytypic part from the rest of the
program. The term interface, which appeared in the types in the previous subsection as class

Term, is a framework for polytypic programming on terms. Several functions are generated for a
type that is an instance of the Term class, such as a function that determines whether or not a term
is a variable and a function that returns the children of a term. The rewriting function (including
functions for matching and for applying a substitution) uses just these functions on terms. This
idea was also present in our previous work [1,6], but it was only applied to unification. It turns
out that the same interface for terms can be used for matching and term rewriting.

Secondly, the program is developed together with a correctness proof, which says that our rewrit-
ing function rewrites any normalizable term to normal form. We just present the result of the
correctness proof, the proof itself is published elsewhere [5,7].

The rewriting functions and all other polytypic functions expressed using the term interface, are
independent of the particular implementation of polytypism. Thus all such functions can be used
in future polytypic programming languages such as Generic Haskell [2] too. This implies that the
term interface is interesting in its own right. We describe several useful combinators and laws
for programming against this interface. Examples of combinators on terms are map Term, which
maps a function over all variables in a term, and bottomup which applies a term transformer
bottom up to all levels of a term. Examples of laws that facilitate calculating with programs that
manipulate terms, are bottomup-characterization, which says when a function can be expresses
using bottomup, and bottomup-map Term-fusion, which fuses the composition of a bottomup and a
map Term into one function (a foldTerm).

This paper is organized as follows. Section 2 introduces terms, combinators on terms, and laws
for these combinators. Section 3 gives two applications of terms: substitutions and matching.
These concepts are used in rewriting. Section 4 specifies and implements polytypic functions for
rewriting and states the theorems they satisfy. Section 5 concludes.

2 A term interface

This section introduces an interface for terms, defines a few combinators that work on terms,
and states some laws that relate these combinators. The proofs of these laws are presented in
Jansson [5]. Appendix A shows that every regular datatype supports the term interface.

2.1 Terms

This subsection defines a Haskell class for types whose elements can be used as terms for matching,
unification and in a term rewriting system. A careful analysis of the properties terms must satisfy
reveals that

e a term has (updatable) children,

e two terms can be tested for top level equality,

e and one can check if a term is a variable.
Each of these requirements is captured in a class and the class of terms is the intersection of these
classes.

class (Children t, TopEq t, VarCheck t) = Term t

In the following subsections we define the three classes Children, TopEq and VarCheck together
with the laws we require from the instances to make the rewriting proofs go through later. The
methods of these classes form an interface for terms that is sufficiently expressive to specify and
implement rewriting, and the laws we require are sufficient to prove the correctness of the rewriting
functions.

2.1.1 Children
The children (immediate subterms) of a term can be extracted and mapped over.

class Children t where children .
map Children i (t—>t)—>t—t

The functions children and map Children should be related by the following law:
children o mapChildren f = map f o children

Function mapChildren should preserve identities and composition:
map Children id = id

map Children (f o g) = map Children f o mapChildren g

2.1.2 Top level equality

Function topFEq is a shallow equality test. A typical topFEq checks if two terms have the same
outermost constructor.

class TopEq t where topEq :: t - t — Bool
We require topFEq to be almost an equivalence relation:
x # 1L = topEqz x
topEq x y = topEq y x
topEq x y = (topEqy z = topEq z z)
It should not depend on the children:

topEq x y <= topEq x (mapChildren [y)

And the number of children should be part of the top level:

topEq x y = (length (children x) == length (children y))

2.1.3 Checking for variables

It should be possible to check whether or not a term is a variable, and if it is, which variable. We
model variables with the type Var (any type with equality would do).

newtype Var = MkVar Int deriving Eq
class VarCheck t where varCheck :: t — Maybe Var

If a term is a variable, then it must not have children.

(varCheck t == Just v) = (children t ==[])

2.2 Combinators on terms

In this subsection we define several general purpose combinators on terms. A first example is the
function size that calculates the number of nodes in a term.

size i Term t = t — Int
size t = 14 sum (map size (children t))

A note on type contexts: Function size uses only one method from the term interface: function
children from the class Children. Thus the most general type for size is Children t = t — Int.
Similarly, many of the other term combinators also use subsets of the methods in the term interface,
but to avoid confusion we always use the type context Term t = .

Using children we extend the top level equality to deep equality:

(==):Termt = t = t = Bool
t==y = topEqx y A and (zipWith (==) (children z) (children y))

If topEq is almost an equivalence relation (as defined in section 2.1), then (==) is an equivalence
relation for all finite terms.

A simple application of the equality check is to define a predicate fizedBy f that is true for elements
which are fixed points of f:

fixedBy :: Term t = (t = t) — t — Bool
fixedBy fx = z==f=x

Function bottomup f applies the term transformer f at all levels of a term, bottom up. It is as
close we can get to a generic catamorphism for types in the Term class. Function bottomup is more
restricted than a normal catamorphism as the output is always of the same type as the input, but
it is sufficient to specify and implement rewriting.

bottomup :: Term t = (t > t) — (t = t)
bottomup f = f o mapChildren (bottomup f)

Function map Term is one possible generic map function for Terms with variables. The application
map Term s maps s over all variables in a term, leaving the rest of the structure unchanged. It is
implemented in terms of the more general function foldTerm p s that also applies the function p
to post-process the results from the children. Function foldTerm can be seen as the combination
of a bottomup (a catamorphism) and a map.

map Term & Term t = (Var — Maybe t) — (t — t)
mapTerm s = foldTerm id s
foldTerm :: Term t = (t = t) = (Var — Maybe t) =t —

foldTerm p s t case varCheck t of

Nothing — p (mapChildren (foldTerm p s) t)
Just v — case s vof

Nothing - pt

Just t' -

Function foldTerm traverses all nodes in a term containing variables bottom up. If a node is a
variable, then it is replaced by the term to which that variable is bound in the finite map s, or
transformed by p if it is not bound by s. If a node is not a variable, then foldTerm is applied
recursively to the children (if any) and the result is transformed by p.

2.3 Laws for term combinators

Using the properties required for the functions from the Term class we can derive a number of laws
for the term combinators. The proofs of these laws are published elsewhere [5,7]. The theorems
for bottomup are restricted to finite terms as captured by the predicate finite:

Definition 1 Finite terms:

nite B Term t = t — Bool
fi
finite = all finite o children

To express that two functions are equal when restricted to a subset of their domains we use the
following definition:

Definition 2 Function equality on a subset:
(===):Eqa= (b— Bool) = (b— a) = (b = a) = (b — Bool)
f=F=g =X (pa)=> (fr==gu)

The following theorem states when a function can be expressed using bottomup. It corresponds to
cata-characterization in polytypic programming.

Theorem 3 bottomup-characterization:
(f Lnite, g o mapChildren f) <— (f Linite, bottomup ¢g)
If welet f = g = id in the bottomup-characterization theorem, then the premise id Linite,

id o mapChildren id follows trivially from the requirement mapChildren id = id of the class
Children. Thus we get the following corollary to bottomup-characterization:

Corollary 4 bottomup-identity:

id Linite, bottomup id
An easy consequence of bottomup-characterization is the following law for proving equality of
functions defined using bottomup:

Theorem 5 bottomup-equality:

(g o mapChildren f Lnite o mapChildren f) <= (bottomup g Jinite, bottomup h)

where f = bottomup g

Function bottomup is closely related to foldTerm; both traverse the term bottom up, but bottomup
does not distinguish variables from other (sub)terms. The behavior of bottomup can be simulated
by foldTerm if the substitution argument does Nothing for all variables:

Theorem 6 bottomup is a foldTerm:

foldTerm f (const Nothing) Linite, bottomup f
We could use this theorem to redefine bottomup in terms of fold Term, but the current definition of
bottomup is more efficient, and slightly more general (as it also works for term-like types without
variables).

The final theorem of this section says that we can fuse the composition of a bottom-up traversal
with a map Term s, where s is a function that maps variables to Maybe some value, into a fold Term,
provided that the bottom-up traversal is the identity on the result of s. The definitions of function
mapM and some other utilities for calculating with Maybe values are presented in Figure 1.

Theorem 7 bottomup-map Term-fusion:

(mapM (bottomup f)os = s) = (foldTerm f s finite, bottomup f o mapTerm s)

maybe :: b — (a = b) — Maybe a — b
maybe n j Nothing = n

maybe n j (Just z) = Jz

mapM :: (a — b) = (Maybe a — Maybe b)
mapM f = maybe Nothing (Just o f)

Figure 1: Utility functions for Maybe-types.

3 Substitutions and matching

This section introduces two applications of terms: substitutions and matching. Both substitutions
and matching are used in the following section on rewriting.

3.1 Substitutions

A substitution is a mapping from variables to terms that changes only a finite number of variables.
As the concrete representation of substitutions is irrelevant for the definition of rewriting, we use
an abstract datatype Sub t for finite maps from variables to terms.

1dSubst = Sub t
modBind i (Var,t) — Sub t — Sub ¢
lookupIn i Sub t = (Var — Maybe t)

This could be implemented as a constructor class in Haskell, but we avoid that because we don’t
want to clutter up the types with an extra type context. The value idSubst represents the identity
substitution, the call modBind (v, t) s modifies the substitution s to bind v to ¢ (leaving the bind-
ings for other variables unchanged) and lookupIn s v looks up the variable v in the substitution s,
giving Nothing if the variable is not bound in s.

Using lookupIn a substitution can be viewed as a function from wvariables to terms. To use substi-
tutions as functions from terms to terms we define appSubst:

appSubst :: Term t = Sub t — (t — t)
appSubst s = mapTerm (lookupIn s)

We can also define a variant of appSubst that does the equivalent of a bottom-up traversal with f
after the substitution has been applied. A straightforward implementation would be the following:

fromVarsUpAfterSubst :: Term t = (t — t) — (Sub t,t) — ¢
fromVarsUpAfterSubst f (s,t) = bottomup f (appSubst s t)

Instead, we use a simple corollary of bottomup-map Term-fusion (Theorem 7) to obtain a more
efficient definition (for some combinations of f and s).

fromVarsUpAfterSubst :: Term t = (t — t) — (Sub t,t) —> ¢
fromVarsUpAfterSubst f (s,t) = foldTerm f (lookupIn s) t

Corollary 8 bottomup-appSubst-fusion:

(mapM (bottomup f) o lookupIn s = lookupln s)
= (fromVarsUpAfterSubst f (s,t) == bottomup f (appSubst s t))

For example, if bottomup f is an implementation of rewriting to normal form and the substitution
binds all variables to terms in normal form, then the condition is satisfied.

3.2 Matching

Matching a pattern p with a term t yields Just a substitution s such that appSubst s p == t,
or fails with Nothing if no such substitution exists. Both the pattern and the term may contain
variables, but the matching only allows variables in the pattern to be instantiated — any variable
in the term is treated as a term constant. Function match is defined in terms of match’' that
carries around a current substitution, starting with the identity substitution.

match :: Term t = t = t - Maybe (Sub t)
match’ :: Term t = t — t — Sub t — Maybe (Sub t)

match p t = match' p t idSubst
match’ pt s = maybe no yes (varCheck p)
where no = if topFEq p ¢t then
threadList (zipWith match' (children p) (children t)) s
else
Nothing
yes v = Just (modBind (v,t) s)

We assume that the patterns are linear - that is, no variable occurs twice in the same pattern. It
is easy to extend this definition to work in the presence of nonlinear patterns; we do not, however,
include the details here.

The utility functions threadList and (@Q) compose monadic functions in sequence. Function
match uses these for the Maybe-monad.

threadList = Monad m = [a = m a] = (a = m a)

threadList = foldr (QQ) return

(@) = Monad m = (a - mb) - (¢ > ma) = (¢ > mb)
f@ag = At = gr>=f

4 Rewriting

This section specifies polytypic rewriting and presents an efficient implementation. We start in
Section 4.1 with defining a function rewrite_step, which performs a single rewrite step on a term.
Function rewrite_step is then used in a specification of (a clearly correct, but inefficient) function
rewrite in Section 4.2. In a few steps, function rewrite can be transformed into an efficient
rewriting function. We will just give the final result of this transformation: function rewrite?
in Section 4.3. The full calculation can be found in Jansson [5,7]. We end this section with a
discussion on the asymptotic complexity of the rewriting functions in Section 4.4.

4.1 One step rewriting

Given a rule list rs and a term ¢ to match we can select the first matching rule with firstmatch rs t:

firstmatch :: Term t = Rulest -t — Maybe (Sub t,t)
firstmatch [] t = Nothing

firstmatch ((lhs, rhs) : rules) t = case match lhs t of
Just s — Just (s, rhs)
Nothing — firstmatch rules t

If a rule matches, then firstmatch rs ¢ returns Just a pair (s, rhs) of the substitution and the right
hand side of the matching rule.

Many of the functions defined in sequel are parametrized on the rule list (representing the rewriting
system), but only firstmatch actively uses the rules. As the rule list argument is fixed during the
other rewriting calculations, we write this argument as a subscript to improve readability. For
example, we write rewrite,s t for the application of function rewrite to the rule list rs and the
term ¢.

Using firstmatch and appSubst we can transform a rule list to a top level reduction function
reduceM that gives Just the rewritten term or Nothing. An immediate variant is reduce that
returns the term unchanged if no rule matches.

reduceM :: Term t = Rules t — (t = Maybe t)
reduceM = mapM (uncurry appSubst) o firstmatch rs
reduce : Term t = Rulest >t —t

reduce,s t = maybe t id (reduceM,s t)

The reduce functions only apply the rewrite rules on the top level of the term, but we want to
apply the rules at any level. In a relational treatment of rewriting this corresponds to extending
the top level reduction relation to a congruence. To retain the deterministic functional view we
have to choose a rewriting strategy. We have chosen the parallel innermost rewriting strategy as
this lets us transform the rewriting function into an asymptotically optimal solution. Innermost
means that we order the subterms by their depth and apply the reduction function bottom up
until the first match, and parallel means that all subterms at the same depth are reduced at the
same time. Function parallelInnermost takes any top level term transformer to a global one step
transformer, using the parallel innermost rewriting strategy. (The corresponding function for the
parallel outermost rewriting strategy, parallelQutermost, is included here for comparison, but is
not used in the sequel.)

parallelInnermost = Termt = (t > t) = (t > t)

parallellnnermost f = contIfFizedBy (mapChildren (parallellnnermost f)) f
parallelOutermost i Termt = (t = t) = (t = ¢)

parallelOutermost f = contlfFizedBy f (mapChildren (parallelOutermost f))
contlfFizedBy = Termt = (t > t) = (t > t) > (t—=1)
contlfFixedBy f r = iff fizedBy f then r else f

where iff is lifted if. Combining parallellnnermost with reduce we arrive at one-step rewriting:

rewrite_step :: Term t = Rules t — (t — 1)
rewrite_step,, = parallelInnermost reduce s

4.2 Rewriting to normal form

The final step needed to obtain rewriting to normal form is, in relational terminology, the transitive
closure. As a functional counterpart we use a fixed point operator fp that takes a one step reduction
function r to a normalizer by applying r until the input term doesn’t change:

fouTermt = (t —t)— (t = t)
fo f = iff fixzedBy f then id else fp f o f

The result res == fp f z, when fp terminates, is a fixed point in the sense that res == f res, that
is, fizedBy f res holds. Now we are ready to define rewriting to normal form:

rewrite :: Term t = Rules t — (t — t)
rewrite,s = fp rewrite_step,.

Function rewrite,s rewrites a term until no rule applies anymore, that is, it rewrites a term to
normal form. A term is in normal form for a rule list rs if it is unchanged by rewrite_step,.,:

normal :: Term t = Rules t — (¢ — Bool)
normal,s = fizedBy rewrite_step,.,

For rule lists rs corresponding to strongly normalizing rewrite systems, rewrite,s will take any
term to its normal form, but rewrite,s also works for the subset of normalizing terms of any other
rewriting system. If a term has multiple normal forms, then rewrite, calculates only the one (if
any) reachable by the parallel innermost rewriting strategy. If this strategy does not terminate
for a certain term, then neither does rewrite,;. More formally, we define normalizing terms and
the first theorem for rewrite: (The operator (V) is logical “or” lifted to predicates.)

Definition 9 Normalizing terms:

normalizing :: Term t = Rules t — t — Bool
normalizing,, = normal,s V normalizing ., o rewrite_step,.,

Theorem 10 Rewriting gives a normal form:

normalizing ., = (normal,s o rewrite,s)

The proof of this theorem by fixed point induction is not difficult, but omitted here because of its
length.

Function rewrite,s can be seen as an executable specification of rewriting to normal form for a
given rule list and a given term. It can be useful for experimenting with different rule lists but
for larger terms it is unacceptably inefficient. We define the norm of a term (with respect to a
specific rule list) to be the number of (parallel innermost) reduction steps that it takes to reach
normal form:

norm : Term t = Rules t - t — Int

NOTM s t = if normal,s t then 0 else 1 + norm,, (rewrite_step,, t)

The time it takes to execute rewrite,s is linear in the norm, n, of the input term but quadratic in
the (average) size, s, of the term being rewritten. Clearly it should be possible to do better than
that - optimally we hope to obtain a running time of O(n + s).

4.3 Efficient rewriting

In a number of steps we can transform the specification of rewriting, rewrite,s, into an optimal
function. Here, we only sketch the transformation, but it is presented in detail elsewhere [5,7].

The first few transformation steps are used to remove the expensive equality tests in fp and
contIfFizedBy. The essential change is that the rewriting function is transformed into an inter-
mediate rewrite function that uses reduceM instead of reduce. These transformations are only
valid if we restrict ourselves to productive rule lists. A rule list rs is productive if when a rule
matches a term, applying that rule changes the term. This is a reasonable restriction. Otherwise,
if a rule matches but leaves the term unchanged, then the intermediate rewriting function loops
even though rewrite would have terminated with the unchanged term. The intermediate rewriting
function has complexity O(ns) but it is still not optimal.

After a few more transformations we end up with a less readable, but much more efficient rewriting
function:

rewrite”, = bottomup frewrite”,

frewrite® = Term t = Rules t — (t — t)

frewrite®, = ffpM (firstmatch rs) (fromVars UpAfterSubst frewritel,)
oM i (a — Maybe b) — (b — a) = (a — a)

foM fMr = Az — maybe zr (fM z)

10

Theorem 11 Efficient rewriting is correct with respect to its specification:

For all productive rule lists rs:

. normalizing,., .. B
rewrite,g === "" rewrite,;

This version of rewrite is the fifth (and most FEfficient) version in the calculation, hence the
superscript E on rewrite”. Function rewrite” is linear in the number of steps needed to rewrite
a term, and independent of the size of the intermediate terms. This big improvement is obtained
by avoiding repeated traversals of already normal children. The improved version instead only
traverses the right hand sides from the matching rules.

4.4 Efficiency comparison

A very simple measure of the running time for the different rewriting functions (two of which
are given in this paper) is the number of Hugs-reduction steps (not to be confused with rewriting
steps in the rewriting system) required to run the functions on some examples. The following table
shows some measurements of the number of Hugs reductions required by the different versions to
rewrite the expression 2" for n = 6,7,8. The number 2 abbreviates S (S Z) :: Ezpr and the
exponentiation notation (2"), is a shorthand for repeated multiplications (uses of (:x:)). The
expression is normalized using the rewrite rules ezprrules defined in Section 1.

expression 20 27 28 e
rewrite steps 107 179 323 n
Hugs-reductions 4 | 7.4M 47TM 344M O(e*n)

Hugs reductions £ | 72k 122k 218k O(n

The last column in the table gives the asymptotic complexity for the different versions in terms
of the size of the answer e and the number of parallel innermost rewrite steps n. The number
of rewrite steps n increases more slowly than the size of the answer e as the parallel rewriting
strategy performs more and more inner reductions in parallel as the terms grow. Hence, n is not
quite proportional to e, and we can analyze the complexity in terms of both variables. As we
can see from the table both versions are linear in n but the dependence on e differs. As n is the
number of rewrite steps, we can think of the dependence on e as the complexity per rewrite step.

For version 4 the complexity can be explained by the test for equality at every node in the term.
As the equality check and the number of nodes are both linear in e, we get a quadratic dependency
in total. An equality test that reports False is often quick, but determining that two terms are
completely equal is of course linear. As the equality checks are performed to see if a term is in
normal form, we can confirm the suspicion that this version does a lot of work on already normal
(sub)terms.

Version E completely removes the unnecessary traversals of normal subterms, and thus reduces
the cost of each rewrite step to a constant (determined by the rule list).

5 Conclusions

We have presented a framework for polytypic programming on terms, with which polytypic pro-
grams for matching, unification, rewriting, etc. can be constructed. The framework is an interface
consisting of four functions. Using these four basic functions we have defined a set of combinators
on terms, and we have stated several laws for these combinators. The framework has been used
to calculate an efficient rewriting program from an inefficient, clearly correct specification.

11

Because the only polytypic components of the functions for rewriting, matching and unification are
the functions in the term interface, our functions are independent of the particular implementation
of polytypism. This is an important advantage. Other, less domain specific, frameworks for
polytypic programming are the monadic traversal library of Moggi, Belle and Jay [9] and the basic
combinator library PolyLib [3,5]. Very likely there are other domain specific polytypic libraries,
but they can only be determined by developing many example polytypic programs.

References

[1] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An introduc-
tion. In Advanced Functional Programming, volume 1608 of LNCS, pages 28-115. Springer-
Verlag, 1999.

[2] Ralf Hinze. A generic programming extension for Haskell. In Erik Meijer, editor, Proceedings
of the Third Haskell Workshop, Technical report of Utrecht University, UU-CS-1999-28, 1999.

[3] P. Jansson and J. Jeuring. PolyLib — a polytypic function library. Workshop on Generic
Programming, Marstrand, June 1998. Available from the Polytypic programming WWW

page [4].

[4] Patrik Jansson. Polytypic programming. The WWW home page for polytypism:
http://www.cs.chalmers.se/ patrikj/poly/.

[5] Patrik Jansson. Functional Polytypic Programming. PhD thesis, Computing Science,
Chalmers University of Technology and Goteborg University, Sweden, May 2000.

[6] Patrik Jansson and Johan Jeuring. Functional pearl: Polytypic unification. Journal of Func-
tional Programming, 8(5):527-536, September 1998.

[7] Patrik Jansson and Johan Jeuring. Rewriting as a polytypic application. Work in progress,
2000.

[8] J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Meijer, and
T. Sheard, editors, Advanced Functional Programming ’96, volume 1129 of LNCS, pages
68-114. Springer-Verlag, 1996.

[9] E. Moggi, G. Belle, and C.B. Jay. Monads, shapely functors and traversals. In Category
Theory and Computer Science, CTCS’99, volume 29 of ENTCS, pages 265-286. Elsevier,
1999.

[10] Simon Peyton Jones [editor], John Hughes [editor], Lennart Augustsson, Dave Barton, Brian
Boutel, Warren Burton, Simon Fraser, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hu-
dak, Thomas Johnsson, Mark Jones, John Launchbury, Erik Meijer, John Peterson, Alastair
Reid, Colin Runciman, and Philip Wadler. Haskell 98 — A non-strict, purely functional
language. Available from http://www.haskell.org/definition/, February 1999.

A Polytypic term instances

Using PolyP we can show that all Regular datatypes are Terms by the instances in Figure 2.
These definitions are included for readers familiar with polytypic programming. In this paper we
do not explain how to define polytypic functions, for an introduction to polytypic programming,
see Backhouse et al. [1]. The definitions of fmap2, fflatten and fequal are omitted.

12

instance Regular d = Children (d a) where
children = f[flatten o fmap2 (const []) (:[]) o out
mapC f = inn o fmap2 id f o out

instance (Regular d, Eq a) = TopEq (d a) where
topEq t t' = fequal (==) (A= — — True) (out t) (out t)

instance Regular d = VarCheck (d a) where
varCheck = fvarCheck o out

polytypic fvarCheck : f a b — Maybe Var
= case f of
g+h — fvarCheck v const Nothing
Const Var — Just
g — const Nothing
polytypic fmap2 5 (a—=c)=(b=>d)—>fab—>fcd
polytypic fflatten x fla][ae] = [a]
polytypic fequal “ (a = b — Bool) = (¢ = d — Bool) —
fac—fbd— Bool

Figure 2: A polytypic instantiation of Term using PolyP.

13

