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Introduction.

For a given ring R, the groups GLn(R) form a direct system

in the sense that GLn(R) sits embedded in GL (R) when one

n+1
sends A € GLn(R) to (g_ ?3. We consider the following problem:
prove that the integral homology of GLn(R) stabilizes in the
sense that for given i, the homomorphism Hi(GLn(R),Z) -+

-+ Hi(GLn 1(R),Z) is an isomorphism when n 1s large enough with

+
respect to i. A known but unpublished result of Quillenvstates:
1f K is a field different from Ih then Hi(GLn(K),Z) -

- Hi(GLn+1(K),Z) is an isomorphism for n > i.

The symmetric groups Sn form a direct system just as
GLn(R). We shall describe a method to prove Nakaoka's theorem
on the homology stability for Sn‘ We shall generalise this
method to get homology stability for GLn(R) for a class of
rings including local rings.

Assume Sn acts on a reasonable topological space F.
Construct a fibre space X with fibre F over the classifying
space BSn of Sn in the following way. Let BSn - BSn be a
principal fibration. The group S, acts on the right on ESn in
such a way that ESn/Sn = BSn. Form BSn x F and divide out the
action of S given by g(e,f) = (eg=!,gf) for g € S,» e € ES_,
f € F. The resulting quotient space is X.

Projection onto the first factor yields a map X - BSn,
which is a fibration with fibre F. If F is acyclic in low
dimensions, the homology spectral sequence yields that
Hi(X,Z) -+ Hi(Sn,Z) is an isomorphism for small i.

Projection onto the second factor yields a map X -~ Sn\F
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The fibre-above the image of an f € F in Sn\F is known to be
BStabSn(f). So X can be conceived of as consisting of spaces
BH with H a subgroup of Sn’ glued together in some way. If
Sn\F is reasonable and the homology of H is independent of H
in low dimensions, we expect that there is a subgroup G0 of Sn
such that Hi(X,Z) is equal to Hi(GU,Z) for small i.

Now it is clear what our program should be: construct an
F which is acyclic in low dimensions such that BS _, sits in
X, and the inclusion BS_ _4 * X induces an isomorphism on
homology in low dimensions.

The group Sn acts on the topological n-l-simplex An—l by

1 is the n-2-sphere.

permuting the vertices. The boundary of an”
However, the barycentres of the simplices of Sn“2 have
stabilizers which are too large and too complicated. To avoid
this, we build a topological space made of n! copies of An-i,
one for each ordering of 1,...,n. We might describe this space
as the realisation of a certain semi-simplicial set, but we
gain by passing to barycentric subdivision. The space then
becomes the realisation of some partially ordered set (abbreviated
poset), and a large machinery to handle these is available.

In the context of barycentric subdivision, the n-1-
simplex is the realisation of the poset of all non-empty
subsets of {1,...,n}. In our new space, we want to distinguish
between (1,2) and (2,1), so we define

g(n) = {(il,...,ik)li < ij < n, is # it if s # t}
and we let (il""’ik) < (jl""’jl)’ if the latter sequence

is a refinement of the first. We prer by induction on n that
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the realisation |®(n)| of &(n) is n-l1-spherical, by observing
first that |®(n-1)| sits in |®(n)|, and then glueing the
remaining part of |@(n)| to it, killing the homology in
dimension n-2.

To carry out the rest of our program for the symmetric
groups, we use the homology theory of categories, because it is
a flexible apparatus. If ® is a category, then the categorical
homology H,(®,Z) is naturally isomorphic to the homology
H,(|e],2Z) of the realisation |€| of ‘. Hence we can switch
between both homology theories at will.

The stabilizer of (n) € |&(n)| in S is equal to S We

n-1°
manufacture a category ¥ such that |X| = X is the fibre space
we were after. With the help of homology of categories, we
show that BS _, = X induces an isomorphism on homology in low
dimensions, the main tool being a spectral sequence for a
functor f : © = €' connecting the homologies of € and €'. This
finishes the program for the symmetric groups.

Let R be a ring. To prove homology stability for GLn(R),
we make it act on
8(n,R)={(v1,...,vp)lvl,...,vp € Rn,,avp+1,...,vn det(vl,...,vn)E R*}
If R is a local ring or a Euclidean ring, we prove by a more
complicated version of the same scissors-and glue argument that
®(n,R) is n-1-spherical. However, if we proceed as in the case
of the symmetric groups, a problem arises:
StabGLn(R)(l,O,...,O) = GAn—l(R)’ the semi-direct product of

n-1

GL _,(R) and R , so this stabilizer is not Ganl(R) but a

little larger. Therefore we would like to know that
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Hi(GLn—i(R)’Z) -+ Hi(GAn_i(R),Z) is an isomorphism for small i.

To prove the latter statement, we make GAn(R) act on the
affine analogue of 8(n,R), viz.
L4(n,R)={(v0,...,vp)|v0,...,vaERn,(vi-vo,...,vp—vo) € (n,R)}
Observe that StabGAn(R)(O) = GLn(R). Using scissors=-and-glue,
we can show that-4(n,R) is n-spherical if R is local. However,
this proof does not generalise to give the desired acyclicity
for other rings. So we present another proof, using induction
on n in the following way: we prove that ﬁi(ﬂ{n,R),%) = 0 for
i < n-1 and then, by way of a careful comparison with the
homology of a Tits building, we calculate explicit generators
for the group ﬁn_ltﬁ(n,R),E). The proof draws on a discussion
of so-called homogeneousmorphisms between homogeneous posets.
We finally employ (simple) arithmetical arguments to show that
these generators are zero if R is a field or a subring of Q.
Thus we find that\ﬂ(n,R) is n-spherical if R is local or a
subring of q.

By means of these acyclicity results we prove now, in the
same vein as for the symmetric groups, for R a local ring or

a subring of @ that Hi(GLn(R),Z)'* Hi(GL (R),Z) is an iso-

n+l
morphism for n > 2i and surjective for n = 2i.

Results about homology stability for GLn(R) with R a
Dedekind domain were obtained independently by R. Charney [2],

using a different approach.
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List of conventions and notations.

All rings are commutative with unit. A (topological)
space is always a CW complex. The sign ® means end of proof.
References are given with the number of the chapter in
Roman numerals and the number of the item; references inside
the same chapter drop the chapter number.
We give a list of principal notations. It has no pretention

of completeness what so ever.

Notation Meaning See section
Hi(X,A) the i-th homology group of the

topological space X with coefficients

in A.
ﬁi(x,A) the i~th reduced homology group of

X with coefficients in A, i.e. the

homology of the augmented chain

complex.
Hopf(X,Y) The join of the spaces X and Y I1
CX cone over the space X I1
Sk k~-sphere _ I1
SX suspension of the space X I1
SkX k-fold suspension of X ' I1
N,© nerve of a small category €, it is 12

a semi-simplicial set
Ak k-simplex 12
BE, |e| realisation of the small category € 12
£f/Y f :e—+%¥' 3 functor, Y € 0bj(¥'), see 1I2
A see I2
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e, (e,r)

H, (X,£)
P(X,L)

X «'Y

H(X,Y)

LinkY(x)
Link%(x)
Link;(x)

htx(x)

dX

=k
o(A,)

(V)

ix

chains of the category © with

values in the system of coefficients [

H (B (X,L))

a certain acyclic system

of coefficients on the category €,
defined for X € 0Obj €

L an abelian group

poset constructed from posets

X and Y, see definition (1.1)

the same

if Y is a subposet of X, then
LinkY(x)={y € Yly < x or y > x}
part of LinkYIx)

other part of LinkY(x)

the height of the element x of the
poset X

maximal chain length in the poset X

elements of height < k in the poset X

same with > k

ordered set of non-degenerate simplices

of the semi~simplicial set A,

If V is a set, (V) is the poset of all

sequences of distinct elements in V,

ordered in a natural way.
semi-simplicial set associated to
F C (V) having the chain property

p-skeleton of the CW complex X

I3

I3
I3

II1

I11
II1

111

II1

IT12

II2

112

II12

ITy

ITy

ITy
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0(n)
g(n,R)
A(n,R)

(vo,...,v )

FLsSs >

e(n,k,R)

T(n,R)
A(n,R)
g(Ll,..
g(vo,...,vn)
AHn,k,R)

GLn(R)

GAn(R)

X(F,G)

.,Ln)'

gt{1,...,n})

R a ring, see examples in

R a ring, see examples in

if F C &(V) is a full subposet, then
) is a subposet of F which

P
is again a full subposet of O(V)

F(VO,...,V

if F € 61V) is full, then ZnF is the
poset of all sequences in F with new
elements Zgse a2y inserted in that
order

if F C 6(V) is full and S a non-empty
set then F < S > is a full subposet of
(v x S)

if e

138, is the standard basis in

R" then &(n,k,R) = @Tn’R)(e1='-'=ek)
for k <n

Tits building of R"

its affine analogue

generator for ﬁh_Z(T(n,R),Z), R a
Euclidean ring, see (5.2)

the same for Hn_l(A(n,R),%)

see definition (5.8)

group of invertible n x n matrices
over R, the general linear group
general affine group

if G is a group acting transitively
on the full F C (V) then X(F,G) is a

category with Obj(X(F,G)) = F;

ITYy

ITy

ITu
IIS

"II5

II6

ITI3,u4

ITIS

ITIS
III5
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Q(n)

-

credq(n)®, L)

p(F,G)

qucr,e)

(ei,...

G
1

E(q)
P

(q)
BP

k
GAn(R)

2€dq+1

(ag)s (B)

k,1
GA (R)

Tk,l

n

(y

Xi

m

)

)

€ F the set

) = {g € Glgv < w}

projection functor X(F,G) =+ G

a certain subcategory of the category
of ordered sets

morphisms in Q(n), defined for
1<k<n, 0S1i<k

a complex such that

H, (C229(Q(n)?,£))=H (Q(n) ®, L), see

IV (2.1)

projection functor ¥(F,G) -+ Q(dF+1)
E2-term of spectral sequence of p(F,G)
see

see

see

see

GL_(R) K (kMK

statements about the homology of GLn(R)
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I. Preliminaries.

1. Some topological remarks.

A topological space will always mean a C.W.-complex. For
technical reasons, we'll always endow it with the k-topology in
the sense of Steenrod [14]. We'll call it a space, sometimes.

The reader is assumed to be familiar with the elementary
notions of algebraic topology, such as Mayer-Vietoris sequences,
etc.

Because it will play an important role, we shall give a
brief discussion of the join or Hopf-construction here. See
Milnor [S5 ] for more details.

Intuitively, for two spaces X,Y, the space Hopf(X,Y)
consists of all line segments joining a point of X to a point
of Y. Defining the cone over X by

CX = X x [0,1]/X x {0}
one sees one can define

Hopf(X,Y) = CX x Y V X x CY .

XxY
Recall that X/¢ = X U {pt} so that Hopf(X,¢) = X. The Hopf-
construction is commutative, and associative in the following
sense:

(1.1) Hopf (X,Hopf(Y,Z)) = Hopf(Hopf(X,Y),Z)

Taking sk the k-sphere, one has

(1.2) Hopf(X,S8%) = SX = CX U ,CX
the suspension of X. Since
s = 3881 - Hopr(s¥Tl,s0)

one sees by (1.1) that



(1.3) - Hopf(Xx,s¥) = s¥*Ix

the k+l1-fold suspension of X.

The definition of Hopf(X,Y) allows us to write down a
Mayer-Vietoris sequence connecting its homology with coefficients
in a commutative ring A to the homology of X and Y. We have in
fact
(1.%)..> H (X x Y,A) > H;(X,A) @ H,(Y,A) —H,(Hopf(X,Y), A~

—*Hi_l(x x Y,A) = ..

We say that X has the homology of a wedge of k-spheres over
A or is a homology-wedge of k-spheres over A if the reduced
homology of X with coefficients in A has the following
properties:

H,(X,A) = 0 if i #k

ﬁk(X,A) is free over A.
Note that the empty set is a homology-wedge of (-1)-spheres
over A because §;1(¢,A) = A, ﬁi(¢,A) = 0 for 1 = 0.

Assume now X,Y are homology-wedges of k,l-spheres over A
then by Kinneth we have

Hn(x x Y,A) = @_ Hi(X,A) 8 Hj(Y,A)

i+j=n

If k,1 = 0 we find

Hg(X x Y,A) = HO(X,A) ] HO(Y,A)
and by (1.4)

H, (Hopf (X,Y),A) = ﬁo(x,A) 8 QO(Y,A)

In case k 0, 1 > 0 we have

Ho(X x Y,A) = Hy(X,A)
so by (1.4%)

2.



Hy,,(Hopf(X,Y),A) = H (Y,A) 8 H (X,A).
And if k,1 > 0 we find

H (Hopf(X,Y¥),A) = H (X,A) 8 Hy(Y,A) .

k+1+1
In all cases, if i # k+l+1 we find
Hi(Hopf(X,Y),A) = 0.

As Hopf(¢,X) = X, we have shown for all k,l1 » -1:

(1.5) Proposition. If X,Y are homology-wedges of k,l-spheres

over A, then Hopf(X,Y) is a homology wedge of k+l+l-spheres

over A, and

a4

A, 1,1 (HOPE(X,Y),A) = H (X,A) 8 H,(Y,A) .

2. The realisation of a small category.

Let © be a small category, i.e. a category whose objects
form a set. Its realization can be viewed as a geometric
"picture" of €, in which objects are represented by points,
morphisms by line segments between appropriate points, commu-
tative triangles of morphisms by solid triangles and so on..

In this section, we shall give the definition of the
realisation of a small category and we'll recall some
properties. Furthermore we introduce some technical notions.
For more details, see Segal [12}, Quillen [8 ], §1.

Let © be a small category. Its nerve N,€ is a semi-

simplicial set, defined as follows:

f f .
= — . 1
Nke {)(0 4 x1 - ... —-B xplxl € 0bj(e), fle Mope(xi_i,xi)}
Let ai : Nke - Nk_ie be given by d?leting Xi, and o; ¢ Nk€ -

. idy. _
-+ Nk+1€ by replacing X by X; _ X4

The standard k-simplex Ak is the convex closure in ngof

3.



k+1l points in general position. A point of Ak is then represented

n
by a sequence (to,..xk), t. € {0,111, Z t. = 1, by using
i i20 &
barycentric coordinates. Define for i = 0,...,k+1
5. Ak - Ak+1
i
(tO,. ..,tk) g (to,.. "ti—1’0’ti" ..,tk)

and for i = 0,...,k-1

. Lk k-1
Si t A A
(to,...,tk) s (tO,...,ti+ti+1,...,tk)

Now form
ange x S
and divide out the equivalence generated by

(o,x,t) ~ (x,s:1)

(3;x,t) ~ (x,6it) .
The resulting quotient space, endowed with the k-topology, is
the (geometric) realisation of C, denoted BE® or |E€|. If
f : ¢ +-¢€' is a functor between small categories, then
Noef : Ny© = N, €', defined by

f f(fy)

N (xgE L B = e B TR ey
is a morphism of semisimplicial sets. It gives rise to a

continuous map Bf : BE - BL'.

The realisation has the following properties.

(2.1) Proposition. (i) If €,€' are small categories, then

B(® x €') = BE x BE', and if €? is the opposite category of €
then BE = BE?,

(ii) A natural transformation of functors £f,g : € = €' induces
a homotopy between Bf and Bg.

(iii) If a functor f has a (left or right) adjoint then Bf is



is a homotopy equivalence.
(iv) A category having an initial or final object has

contractible realisation.

Let £ : € = €' be a functor of small categories.

To describe f the categories f/Y are useful. They are defined
as follows:’

ObJ(£/Y) = {(X,v)|{X € 0obj(e), v : £(X) -+ Y} .

If (X,v) and (X",v') are in Obj(f/Y), a morphism

Wwo (X,v) > (X',v') is aw : X » X', such that v'f(w) = v. In
what follows X € 0bj € and v € Mor € will be abbreviated to

X €€, v €% respectively.

Denote by £~!'(Y) the fibre of Y, i.e. the subcategory of
€ consisting of objects mapped to Y and morphisms mapped to idY.
We obviously have a functor f~!'(Y) - £/Y, sending X P (X,1idy).

Suppose now these functors have left adjoints (X,v) & v _X.
If v : Y > Y' is a morphism, then for X € f-lY, X v (X,v) b v X
is a functor v, : f7'(Y) = £71(Y') called cobase change.

We call such a functor f precofibred.

If v : YY", u: YY" =+ Y" are morphisms, then there is
a morphism of functors (uv), - u,v, coming from the morphism
(X,v) — (v.X,idY,). If for all composable u,v, {(uv), - u,v, is
an isomorphism, we call f cofibred.

Reversing all arrows, we get the dual notions of Y\f,

prefibred and fibred.

For a functor f : C = €' to be a homotopy equivalence,

one has the following "theorem A" of Quillen (8 ].



(2.2) Theorem. If f : € = €' is a functor of small categories
and B(f/Y) is contractible for all Y € €' then Bf is a homotopy

equivalence. The same holds if all B(W\f) are contractible.

3. Homology of categories.

If ¢ is a small category, then a system of coefficients
on € is a functor £ : € —+ Ab, Ab being the category of abelian
groups. We shall define homology groups of € with coefficients
in £ which are seen to be closely related to the homology of the
topological space BE. For more details and proofs of the results
in this section, the reader is referred to Gabriel-Zisman [3 ]
app. LI.

The systems of coefficients on a small category € form an
abelian category. If L is such a system, define

e _(e,L) = 4 sexy

P X > oo X 0

Now EB,(E,L) is aosimplicigl abelinan group, with obvious
definitions of boundaries and degeneracies. Its homology
groups are called the homology groups of € with coefficients
in £ and denoted Hp(e,f).

A system of coefficients on € is called morphism-inverting
if £L(f) is an isomorphism for each f € €. We call £ constant
if L(f) = id for all f € €.

A morphism-inverting system of coefficients on € gives
rise to a local system of coefficients on BE. Denoting both by

£ we have by Quillen [8] §1

H (BE,L) = H (€,L) . .

Example. Let G be a group. We can view it as a category with

6.



one object, also denoted by G. A functor £ : G = Ab is just an
abelian G-group L. We have HP(G,L) = HP(G,£), i.e. group
homology coincides with categorical homology, as we see by
comparing complexes.

Furthermore £ is always morphism-inverting, so
HP(G,L) = HP(G,I) = HP(BG,f). Recall that BG is a K(G,1)-space

in the sense of Eilenberg-MacLane.

(3.1) Proposition. Let L be a system of coefficients on the

small category €. The group H,(€,L) can be identified with
liﬁef, and Hn(E,f) can be identified with the n~th left
satellite of liﬁe, SO

H (€,L) = lim® L.
n n

i
The proof of this result uses the existence of acyclic
coverings. Because we need the precise form of an acyclic
covering later on, we'll give a proof of this here. Recall that
a system of coefficients ® is called acyclic if Hi(E,?) =0,

for 1 > 0.

(3.2) Proposition. If L is a system of coefficients on a small

category €, then there is an acyclic system P such that
P >L >0 is exact.

Proof. Let X € ® and denote X\€ = X\idp. If L is an abelian
group, let LX\Q be the constant system on X\€ with value L. Let

p : X\€ - '€ be the projection functor and define

MX,LICY) = 1 L (Y,v)
(Y,v)Epl(y) X\E
= AL L.
v : X =»Y

Aw :Y—>Y' defines a functor p™!'(Y) - p~1(Y') by



(Y,v) » (Y',wv), so F{(X,L) is a system of coefficients on €.

Now we want to compute H,(C,P(X,L)). We have

e, (e,P(X,L)) il ( 40 L

Xo™ - X, X > X,

A L
X 4 xn —"..-' xk

It follows that Hk(E,?(X,L)) Hk(X\E,L) = H (B(X\®),L). Now

H

It

X\® has initial object (X,idx) so B(X\€) is contractible by
(2.1) iv. Hence P(X,L) is acyclic.

We use the P(X,L(X)) to build an acyclic covering of L.
We have a morphism of functors

PX,L(X)) ~ £

defined for Y € € by

POGLEGXN(Y) = 4 Loy =9, piyy
v : XY
Now take
Pz U PXLEX))
Xe€ee
The induced morphism » -+ £ is then surjective. 4

For a functor £ : U — €' between small categories,
Gabriel-Zisman [ 3] give in app.Il theorem 3.6 a spectral
sequence relating the homologies of © and ®'. We shall derive a
similar spectral sequence, starting from an explicit description
of the double complex. We use this double complex to compute
the edge homomorphisms of the spectral sequence.

If £f : € > B' is a functor, observe that Y H-Hq(f/Y,L) is
a system of coefficients on &' for any abelian group L. In case

the functor f is precofibred, it follows from the definition



of cobase change that Y H'Hq(f-‘(Y),L) is a system of coefficients

on ©', and that it is equal to Y H-Hq(f/Y,L).

(3.3) Theorem. If £ : € » €' is a functor between small
categories, L an abelian group, we have a first quadrant spectral

sequence

2 - 'Y » H (£f/Y,L H i
qu Hp( . q( /Y,L) = p+q(b,L)

Sketch of proof. We assume L = Z. Let ¥,,(f) be the double

complex such that qu(f) is the free abelian group on

((Xg = wen > X5 8Xg > ¥y > > Y )X, € e, Y; €®'}.

The definition of the differentials is obvious.

The first spectral sequence of this double complex has as

E!'-term

E! (I) = 1 H (£/Y,2).
pq Y, Fe..> Y q
p

By the general theory of double complexes (cf. Cartan-Eilenberg
[10] Ch XV §6) we know that qu(l) is the homology of the chain
complex %,(E',Y *‘Hq(f/Y,Z)) = E:q(I) and hence
E2Z (I) = H_(e'Y » :
pq( ) P( ¢ Hq(f/Y,Z))
The second spectral sequence has as El-term
E! (II) = !
qp( ) J_L Hp(fxq\\e s Z)
Because B(fxq\b'g is contBactible by (2.1)iv, we know that

0 for p > 0 and so
e, e,z

1 ]
H p(fxq\‘e yZ)

El (ID)

Eip(II) 0 p>20
Hence we find

H,(e,,(£)) = H,(e’,Z)

1t

H, (€, %)



To compute the edge homomorphisms of the first spectral
sequence we observe that there is a morphism of complexes
E,((f/YO)°) -+ e, ()
sending
(Xgavg)® «on X5V ) = (Xg oo X, EX —, v ).
It is clear that
Hq(f/YO,Z)-+ Hq(E,,(f))
factorises through the edge homomorphism Eéq(l) *-Hq(%,,(f)),

i.e. the diagram below commutes

Ho(£/Y, - Hq(b,_(f))
\\\\3 ed%s//)
Eéq(I) = Hy(B',Y = Hq(f/Y,m)

and careful inspection shows that

Hq((f/YO)",Z) - Hq(e**(f)) -> Hq('e",z)
is also the map induced by the functor (f/Y0)° A

Now we want to compute the other edge,viz.
HP(E**(f)) -+ E;O(I)’ under the assumption that B(f/Y) is non-
empty and connected for all Y € 0bj(e'). Note that this
assumption implies that E;O(I) = HP(E',Z). We consider first
the identity ide:E'+E. Both spectral sequences of the double
complex E,*(idb) degenerate, and in this case the edge
homomorphism

Hp(f,,(ide)) - E;O(I) = HP(E,%)
is also an isomorphism. Since the first spectral sequence is

functorial, we have commutativity of

10.



H_(B,,(idy) ——— H_(€,R)
p € edge p

(f
Hp )

H (e, (£)) —S9B&— y ce',2)

The left-hand vertical arrow is an isomorphism since HP(E,‘(ide))
and Hp(e**(f)) are both isomorphic to Hp(€°,Z) by means of the
second spectral sequence which is also functorial. Thus the

edge HP(E_,(f)) *'HP(E',Z) can be identified via this diagram
with Hp(f).

Observe that the first and second spectral sequences of
E,.(idt)yield an identification of H,(€,%Z) and H,(€%,Z). One
can show that this is the usual identification,cf.(2.1)i. The
reader can construct a proof himself from Quillen's proof of
theorem A. We leave it as a (difficult) exercise, since we

don't need 1it.

i1.



II. Partially ordered sets.

1.“Definitions and generalities.

A partially ordered set (abbreviated poset) is a set X
endowed with a reflexive, transitive relation < such that
a <band b < a imply a = b. A morphism f : X = Y of posets is
a map such that f(x) < f(y) if x < y. A subposet Y C X is a
subset Y C X with the inherited ordering.

We can view X as a small category taking X as a set of
objects; a unique morphism x = y exists if and only if x < y.
We can build its realisation as in I,52.It is built of non-
degenerate simplices, i.e. simplices coming from sequences
X ... < Xs X5 € X, with appropriate identifications. We
say it consists of simplices X, <... < Xy«

In this section, we want to describe certain operations

cn posets, and investigate the relation between a poset X and

a subposet Y in certain cases.

(1.1) Definitions. i) If X and Y are posets, the join X * Y is

defined as a set by X IL Y. The ordering on X * Y extends the
ordering on X and Y and for x € X, y € Y we have x €< y.

ii) For posets X,Y we define the poset H(X,Y) as a set by
XY WX Y. The ordering extends the ordering on X and Y

and for x,x' € X, y,y" € Y we have

N
x-
[
3
~

(x,y) < (x',y") in H(X,Y) if and only if x

N
<
’_l
o |
o

y

A
x'-
[
o
~

x € (x',y") in H(X,Y) if and only if x

y € (x',y") in H(X,Y) if and only if y

A
<

12,



If X,Y are posets define h(X,Y) : H(X,Y) = X * Y for x € X,
y €Y, and (x,y) € X x Y by h(X,¥)(x) = x, h(X,¥Y)(y) =y,
h(X,Y)(x,y) = y. From (1.1) we see h(X,Y) is a morphism of
posets. The following proposition gives some useful properties

of - * - and H(-,-).

(1.2) Proposition. 1) X * Y, H(X,Y) are functorial, and h(X,Y)

is a morphism of functors.
ii) X * {p} * Y| = C|X * Y| for all posets X and Y.
iii) For all posets X and Y, |h(X,Y)|is a homotopy equivalence.
iv) JH(X,Y)| = Hopf(|X|,|Y|) for all posets X and Y.
Proof. i) is obvious. |
ii) The realisation of X * {p} * Y consists of simplices
xg < xq<...< Xy <yg <...< Yy X5 € X, v5 € Y with k,1
possibly -1, though not both, and x5 < ... < x <p<yg<...

. < Yis X3 € X, yj € Y with k,1 possibly -1. So the realisation
of |X » {p} * Y| is a cone over |X * Y| with top p.

iv) JH(X,Y)| consists of simplices of the following two forms:

Xq < ... < X < (xk+1,yk+1) < ... < (xn,yn), X € X, yj €Y,
n=0, -1 <£k<n
and y,< ... <y < (xk+1,yk+1) < ... < (xn,yn), x; € X, Y5 €Y,

n=0, -1 <k <n.
From this it follows, if we take XUXxYand YUX x Y
as subposets of the poset H(X,Y) that

FH(X,Y)| = |X U X x Y] U Y U X x Y|

x| |
Now the map X x ({p} * ¥Y) + X U X x Y sending (x,p) + x, and
(x,y) » (x,y) is seen to be an isomorphism of posets so

IX UX x Y| = |X x({p} * Y)]

13.



|X] =x |{p} = Y| by I(2.1)(i)

= |x] x c]y]| by (ii) above.
Analogously
|y Ux x Y| = c|X]x |Y].
So
[HOGY| = |X] % Cl¥] Yy g ClX] < 1Y)

fr

Hopf(|X]|,|Y]|) by definition
This finishes the proof of (iv).
iii) By I, theorem (2.2) it is enough to show |h(X,Y)/x| and

|h(X,Y)/y|are contractible for x € X, y € Y. Now

h(X,Y)/x {x' € X|x' < x}
= X/x
As x is a final object of X/x, we find by I (2.1)(iv) that
|X/x| is contractible. Also
h(X,¥)/y = X U (Y/y) U X x (Y/y)
So by iv) above

|n(X,¥)/y| = Hopf(|X|,|¥/y|)

which is contractible as |Y/y| is contractible. e

We want to investigate now the relation between |X| and
|Y| for a subposet Y of a poset X, in certain special cases.
We call a poset X discrete if x g x' implies x = x' for all

x,x' € X. If Y is a subposet of X, x € X,we define

LinkY(x) = {y € Y|y < xory>x}.
Link;(x) = {y € Y|y > x}
Link;(x) = {y € Y|y < x}.

Then obviously .

. e T ioaL— .+
LlnkY(x) = LlnkY(x) * LlnkY(x).

14,



If Y is a subposet of X, then X\Y is also a subposet. We

require X\Y to be discrete. In this case we have

(1.3) Proposition. Let Y be a subposet of the poset X. Assume

X\Y is discrete. Then

Ix]71Y} = V S|Link,(x)]
xEXN\Y
= V. S Hopf(]Linky(x)|,|Linky(x)])
xEX\Y
Proof. Since X\Y is discrete, a simplex Xg < ... <x, in the

realisation of X contains at most one element in X\Y, i.e.
either for all i, x; € Y or if X5 & Y then for i # j, xs €Y.
Hence, denoting Y(x) = Y U {x} for x € X\Y we find

X} = U |Y(x)]

x€EX\Y

and if x,x' € X\Y we have |Y(x)| N |Y(x")| = |Y|. Contracting
|Y] to a peint we find

IX[/71Y] = VvV Y /|yy.

x€EX\Y
To compute |Y(x)]|/|Y|, observethat, by the description

of simplices in |Y(x)| above

Y (x) |

- erso b
| Y] U|Link§(x)*Link;(x)|lLlnkY(X) {x}*Linky(x) |

= 1Yl U|Link§(x)*Link;(x)|C|Link§(X)*Link;(X)l
So we find
|¥(x)|/]¥} = S|Linkgy(x) * Linkg(x)|
= S Hopf(|Linky(x)|,|Linky(x)|) by (1.2)iii),iv).
This finishes our proof. i

2. Homogeneous posets and morphisms.

This section is devoted to a special class of posets and

morphisms. Our aim is to describe these so-called homogeneous

15.



morphisms in detail. First some technicalities.

If X is a poset, a chain of length k in X is a sequence
X0 < L o0 < Xy of elements in X. Chains of length k correspond
obviously to k-simplices in the realisation. If the length
of chains in X is bounded we call X finite dimensional. This
holds if and only if |X| is a finite dimensional complex. The
dimension of |X|, denoted dim|X|, is then equal to the maximal
chain length in X. This last number is denoted by dX.Convention:
if X = ¢, then dX = -1. If X is a finite dimensional poset, so
is each subposet.

Let X be a finite dimensional poset. For x € X we define
the heighth of x, denoted htx(x) or ht(x) if no confusion
arises, by

hty(x) = 1 + d(Linky(x))

i.e. hty(x) is the maximal length of a chain ending in x. Now

define

(2.1) Definition. i) A poset X is called homogeneous of

dimension @ if X is finite dimensional, dX = d, and each chain
Yo < .on <Yy in X can be refined to a chain of maximal length,

i.e. there is a chain Xq < ... <x, in Xand a ¢ : {0,...,k} -

d

+{0,...,d} with ¢(i) < ¢(3) if i < j such that Xo (i) = Y.
ii) Let X,Y be posets, homogeneous of dimension d and let

f : X > Y be a morphism. We call f homogeneous if

htYf(x) = htX(x) for all x € X and f/y is a homogeneous
poset of dimension htY(y) for all y € Y.

i{ii) If moreover f is a bijection on the elements of heighth

+ k, then £ is called homogenecus cf degree K.

16.



A homogeneous morphism has the lifting property for

chains:

(2.2) Lemma. If f : X > Y is a homogeneous morphism between
homogeneous posétscxfdimension d, then for each chain

Yo <. .. < Yy in Y there is a chain X < ... < Xy in X such
that f(xi) = y;- In particular,f is surjective.

Proof. Induction on k. Suppose we have lifted Yg < ve < ¥Yoq

to a chain Xg < ... <x The latter chain can be refined to

k-1°
a maximal chain'in f/y, so we can certainly find an x, € f/yk

with htf/yk(xk) = htY(yk) (= htx(xk)) and such that
Xg < onn <x is a chain in X. Now f(x,) < vy and
htYf(xk) = htx(xk) = htY(yk) so f(xk) = Yy &

We first describe homogeneous morphisms of degree k, and
then we shall find a factorisation of a homogeneous morphism
into homogeneous morphisms of certain degree.

Notation: if X is a finite dimensional poset, we define

X5 = x € X|ht(x) = k}.

(2.3) Proposition. Let X,Y be homogeneous posets of dimension

d, and £ : X + Y homogeneous of degree k. Then there is a
factorisation of f, say X3z B v such that i makes X a sub-

poset of Z, the map |h| is a homotopy equivalence, and

|Z|/|1X] = v S Hopf(|f/y|,|Linky(y)|)
yEY
ht(y)=k
Proof. Define Z = ngﬂ,Y>k as a set. Takg on Xsk and Y;k the

induced ordering, and define for x € XSk’ y € Y?k

17.



x <y in Z if and only if ¥(x) < y in Y.
It is clear that this defines an ordering on Z. Define i : X = Z
by 1i{x) = x if htx(x) < k, 1(x) = f(x) if htx(x) > k.

To show i makes X a subposet of Z, we have to show that
i(x) < i(x') implies x < x' for x,x' € X. If hty(x') < k there
is nothing to prove. If htx(x') > k we have i(x") = f(x'), and
the definition of the ordering on Z implies f(x) < f(x') both
if htx(x) < k and htx(x) > k. As in the proof of (2.2) we find
an x" with x < x" a lifting of f(x) < f(x'). As
ht(£f(x")) = ht(f(x'))# k and f(x') = f(x") it follows that
x'" = x" and x < x. Now identify X and i(X).

To prove the last assertion, observe that

\X = {y € Y|htY(y) = k}

and if htY(y) k, then

Link;(y) {x € X |f(x) <y}
= f/y
and as f is bijective on elements of heighth # k,

"
Llnkx(y)

I

{x € X]ly < f(x)}
{y' € Y|y <y'}

.+
LlnkY(y)

because Link;(y) C Xyppq- Now applying proposition (1.3) this
ylelds
|Z|/|X} = ¥ 8 Hopf(|f/y],|Linky(y)|)
y&Y
ht{y)=k
It remains to define h and to show it is a homotopy

equivalence. Of course, we define h(x) = f(x) if x € X_, ,

h(y) = y if y € Y- - Then h is a morphism of posets. Also

18.



define j : Y = Z by j(y) = y if ht(y) » k, and j|Y<k-1 is the
inverse. of f|X<k_1. By the lifting of chains, j is a morphism
of posets. Moreover hj = idY and jh(z) » z for all z € Z. So

by I (2.1)(ii) the map |h| is a homotopy equivalence. X

Now let £ : X * Y be a homogeneous morphism between
homogeneous posets X,Y of dimension d. We define the posets Ui
for i = 0,...,d+1 as follows:

Ui = x<;i--1 JJ'Y>i
on X;_4 and Y>i we take the induced ordering, and for
X € Xéi—l and y € Y;i we define:

x <y in qiif and only if f(x) < y in Y.

It is evidentLH.is a poset. To prove U is homogeneous of
dimension d, we have to show that a chain in Ui can be refined to
a maximal chain. So let Xq <l <% < Yo < .-. <y, be a

chain in U;. We have three cases: i) k » 0, 1 = -1, ii) k = —i;

1 >0, iii) k,1 = 0.

Case 1) Refine Xg < ... < X, to a maximal chain in X and

project the elements of height » i to Y.

ii) Refine Yo < ... < y, to a maximal chain in Y, say

?0 < ... < ;d. By (2.2) we can lift this chain to X, say to
<...<x

Xg < ... < x4 and take as refinement x <3yi<:...< Y4

0 i-1
iii) Refine f(xy) < f(xl) < e <) <yg <.l < y, to a
maximal chain ‘}70 < o0 < ;d in Y. Then

Xq < ... < X < Y3 < ..o < Y4
is a chain in u; - Refine the chain Xg < ove <% in f/;i to a

maximal chain ;0 <... < ;i’ which is possible since f/?i is

homogeneous by definition. Take as the desired refinement

19.



X .. <X
x0 < xl—l

This proves U, is homogeneous of dimension d, and we see

<yi<...<yd

htx(x) = htUi(x) if x € Xsa-1’ htY(y) = htUi(y) if y € Yy -

Now define f. : U, = U, 4 by

fi(x) X if x € ngi_2

fi(x)

£(x) 1f x € X 1\Kgioo
£.y) =y if y € Y,

Then we have

(2.4) Theorem. Let X,Y be homogeneous posets of dimension d,
f : X - Y homogeneous, then we have a factorisation
£ £
_ d+1 1 _
X_Ud+1 ——+Ud+...+U1 ——-—rUO-Y
with f. homogeneous of degree i-1, and if y € U;_, has height
i~1 we have
£./y = £y
N e+
LlnkUi_l(y) = LlnkY(y)
Proof. The last assertions are easy to verify. It remains to
be shown f. is homogeneous of degree i-1. For this, it suffices
to compute fi/u for all u € U;_, and show it is homogeneous
of dimension hty; ,(u). Well, if x € X, _,, we find f;/x 1is
homogeneous since
£/ = X/x
and 1f y € Y}i*i
{x € Xy 4|F(x) <y} U {y' € Y>i|y' < ¥}

fi/y

(£/y)g5_q Y (Y/y)>i
Now, one verifies that f|f/y : f/y =+ ¥Y/y is a homogeneous
morphism. Therefore the proof of the homogeneity of Ui applies

and we find that fi/y is homogeneous of dimension htY(y)zhtUi 1(y)ﬁ
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3. Posets and homology.

In this section, we present some tools to show certain
homology groups of posets vanish. They are the homological

interpretation of the results obtained so far in this chapter.

(3.1) Definition. A poset X is called n-spherical if its

realisation is a homology-wedge of n-spheres over Z.

By the universal coefficient theorem, if X is an n-spherical
poset, then |X| is a homology-wedge of n-spheres over A for
each commutative ring A. In the sequel, homology with
unspecified coefficients will always be homology over Z.

We have H,(X) = H,(]X]) by I, §3.

(3.2) Theorem. Let X be a poset, Y C X a subposet. Assume
X\Y is discrete, and Y is n-spherical. Then

i) If for each x € X\Y, the poset LinkY(X) is n-1-spherical
then X is n~spherical.

ii) If for each x € X\Y, the poset Linky,(X) is n-spherical,
and

® H_(Link,(X)) = H_(Y)
xex\y " Y n
is surjective, then X is n+l-spherical.

Proof. By proposition (1.3) we have

|X]/7]Y} = V S]Linky(x)].
xEX\ Y
As |X|/]Y] = |X|L”Y|C|Y|we find a Mayer-Vietoris sequence

<o H Y)Y > H (X)) - @ H, (S]Linky,(x) ) > H, _,(]Y])=...
-~ XEX\Y
Now we have H,(S|Linky(x)|)= H;_ ,(JLinky(x)|)so:

Co B - H (X)) > @ H (| Linky GO H_ (Yo

x€EXN\Y
This yields the desired result both for i) and ii), since one
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can prove that the connecting homomorphism
H, (S|Link,(x) )= H,_,(|Y]) is equal to the mapping
Hi_flLinkY(x)l)*-Hi_l(lYl). X

Our next theorem gives a homological translation of (2.4).

(3.3) Theorem. Let £ : X = Y be a homogeneous morphism between
homogeneous posets of dimension d. Suppose Y is d-spherical,
and for all y € Y that f/y is ht(y)-spherical, Link;(y) is
(d-ht(y)-1)-sperical. Then X is d-spherical and there is a
filtration

0 = Fd+1 C Fd C ... CF,CF_
such that

= H&(X)

F ,/F, = H (Y) naturally,

~ ~ . + -
Fq/Fq+1 = g; Hq(f/y) ® Hd_q_l(LlnkY(y)) for q = 0,...,d.
ht(yl=q
Proof. Theorem (2.4) yields a factorisation
fa+1 £q
X = Ud+1 —_—— Ud —-, .. —rU1«~-~> UO =Y
with fk 2 Uy *'Uk-l homogeneous of degree k-1. Applying the

exact sequence in the proof of (3.2) to the factorisation of fk
given in (2.3) we find
cer > HAOMU 4 ]) > @

yeY
ht(y)=k-1

o . o+
Hi_i(Hopf(|f/y|,|L1nkY(y)|)) -

- ”1-1(|Uk|) -+ Hi-l(luk—ll) ~
Now if ht(y) = k-1 we have f/y is k-1-spherical and
Link;(y) is d-k-spherical, so Hopf(]f/y|,|Link;(y)|) is a
homology-wedge of d-spheres by I (1.3). Inductively we find

U, to be d-spherical, so X is, and, again by I (1.5). we have

k

the exact sequence
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A~ il . + ~ o~
0 *&Eﬁ Hk—l(f/y) ® Hd-k(LlnkY(y)) - Hd(Uk) -+ Hd(Uk—l) =+ 0
ht(y)=k-1 ~
So by induction we construct filtrations on the Hy (U )
yielding the desired filtration on ~A(Ud+1) = ﬁd(x). R

The hypotheses of theorem (3.3) are related to the notion
of Cohen - Macaulay posets. We present here a definition suited

to our purposes,

(3.4) Definition. A poset X is called Cohen-Macaulay of

dimension d (abbreviated d-dim CM) if X is d-dimensional,
d-spherical, and if for all x,x' € X such that x < x' the
following holds:

Link%(x) is (ht(x)-1)-spherical

Link;(x) is (d-ht(x)-1)-spherical

(x,x") = Link;(x) N Link;(x') is (ht(x)-ht(x')=-2)-spherical

In particular, a d-dim CM poset is homogeneous of dimension d.

Observe that Quillen [ 11] §8 uses a different notion of CM-ness.

4. A special class of posets.

First some generalities about semi-simplicial sets. Let
A, be a semi-simplicial set. A simplex a € A is called
degenerate 1f there exists b € A ., and a j such that
aj(b) = a. If not, a € Al is called non-degenerate. Take
A; < A, the set of non-degenerate simplices, and define
o(A,) = U A;

n=0

- . o f 1]
Order O(A,) as follows: if a € An, b € An+t’

such that Bi ..... 9. (bl=a.

then a < b 1f and

only if there is a sequence il""’it



We call &(A,) the associated poset of A,. The realisation |A,|

of A, (cf. I §2 or Segal [12]) has the following property.

(4.1) Theorem. If A, is a semi-simplicial set, then |A,| and

|o(A,)| are homeomorphic.

This is just barycentric subdivision. Intuitively this is
clear. For a detailed discussion, see Spanier [13}] Ch.3 sec.3.
Observe that H,(|A.|) = H,(®&(A,)).

We shall now define a class of semi-simplicial sets which
at first glance looks quaint, and find the associated poset
as above. However, once we come to examples, our construction
will become more natural.

If V is a set, one can make V into a category by taking
exactly one morphism between each pair of elements of V. The
associated semi-simplicial set N_V looks like

N Vo= {lvgseav ) |vy € V)
with

Bi(vo,...,vi,...,vk) = (vgse e, vy

l,...,vk) i=0,...,k

Ui(VO,...,Vi,...,Vk) = (VO,...,Vi,Vi,...,Vk) i = 0,-..,}(-

P~

We take NkV to be the subset of NkV consisting of the sequences

vy for i <1 this implies

(vo,...,vk) such that if vy

v, = Vj = vy for i € 3 <1. As ﬁ*v is closed under boundaries

A~

and degeneracies, N _V is a semi-simplicial set. Define

B(V) = (N, (V)) .
An element (vo,...,vk) € ﬁk(V) is degenerate if there is a k
such that v, = Vicpq1r OFs equivalently, by the definition of

ﬁL(V) if there are i,1 such that i # 1" and v, = So

Vl.

F(V) = {(VO,...,vk)|vi € V and v. # vy if 1 #+ 3}.
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It is easily seen that the ordering on OG(V) is as follows:
«(vo,...,vk) < (wo,...,wl)

if and only if there is a ¢ : {0,...,k} = {0,...,1}satisfying
(1) < ¢(3j) if i < j, such that v = w¢(i) for i = 0,...,k.
We abbreviate sometimes vV o= (vo,...,vk).

We wish to consider sub-semi-simplicial sets F, of N.V.
Now (vo,...,vp) € FP is degenerate in F, if and only if it is
degenerate in ﬁ.v. As a result

&(F,) = {(vo,...,vp) € er(v>|(v0,...,vp) € Fos P = 0}
e(v)y N F,

1]

Because (F,) is closed under boundary operators, we have if
V€ @(F,) and W<V thenw € 0(F,). We want to have a name for

this property.

(4.2) Definition. Let V be a set, F € ¢(V) be a sﬁbposet. If

- - - , - .
vE€EF, w<v implies w € F, we say F has the chain property or

satisfies the chain condition.

Take F € &@(V) having the chain property. We want to
associate to F a sub-semi-simplicial set of ﬁ,v. Intuitively
it must consist of sequences made from elements of F by
repeating each item often enough, to make it closed under
degeneracies. More precisely:

NI(F) = {V € N, (V)|there is w € F, i,,...,i, such that

14

It is a technical exercise to show N!(F) is a semi-simplicilal

- -
U‘ ,---,0' (w) = V}
1t

set and that the following holds.

(4.3) Proposition. Let V be a set. Then & and N] give a one-one
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correspondence between sub-semi-simplicial sets F, of ﬁ.v and
subposets F of 0(V) having the chain property. We have
g(NI(F)) = F
N (O(F,)) = F,

From now on, when F C ©(V) has the chain property, we
write F, for the corresponding semi-simplicial set N.(F).
For F & 0(V) satisfying the chain condition we have

F<® = {(vys...5vy) € Flk < pl.

0°*
We find (F<¥). to be a semi-simplicial set whose realisation
consists of the i-simplices in |F,| with i <p, i.e.
[(Fg@).|= IF.IP, the p-skeleton of |F,].

For (vo,...,vp) € T we have

htF(VO""’Vp) = p.
So if we suppose in addition F is homogeneous of dimension d
for a certain d, then for (vo,...,vp) € F there is
(wo,...,wd) € F with (vo,...,vp) < (wo,...,wd). In this case,

|F,| is a d-dimensional cellular complex.

(4.4) Proposition. Let F € &(V) satisfy the chain condition.

Suppose I is homogeneous of dimension d.

1) If F is d-spherical, then F is p-spherical for p < d.

<P

ii) If Féd—l is d-1-spherical, and

~

im(H,_y(Fey ) » H 4, (F)) =0

then F is d-spherical.
Proof. i) By (4.1),(4.3) we have |F| = |F_|, |F<P| = |(F<p)*|'

Above we saw that |F*|p = |(F.),|. As the p-skeleton of a
A
d-spherical cellular complex 1is p-spherical for p < d we are

through.
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ii) Again |F| = |F.]|, |FQ_1| = |(F<d_1).|, and I(ng_l).l is

the d-1-skeleton of the d-dimensional complex |F,|. So

L

H (|(F<d—1)*l) = Hy_ 4(Fgq.q) surjects onto Hy_,

d-1 (JF,|) =
(F). It follows that Hy_,(F) = 0. As |[F| is d-dimensional,

-
-

d-1
Hd(P) is free over Z. =

We shall be concerned with subsets F € (V) satisfying one

extra condition.

(4.5) Definition. A subposet F ¢ (V) is called full of

dimension d if the following holds:

i) F satisfies the chain condition.
ii) F is homogeneous of dimension d.
iii) If (VO,..-,VP) E F, 0 e SP+1’
is called the symmetry condition.

The posets we consider in chapter III are of this type. We

introduce some of them first.

Examples. 1) If V = {1,...,n} then O(V) is full of dimension
n-1. We denote (V) = &(n).

2) Let R be a ring, always assumed to be commutative with 1.
Take 9(n,R) to consist of all sequences (vo,...,vp) e (R™)

such that there is an extension of this sequence to an R~basis
of Rn, or, alternatively, writing the v, as column vectors, such

that there exist vp+1,...,vn__1 with (VO""’vp’Vp+1"" ) €

*Vn-1
€ GLn(R). The poset 0(n,R) is full of dimension n-1.
In particular, for a field K, &(n,K) consists of

sequences of linearly independent vectors in x".

3) For a ring R, define
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An,R) = {(vo,...,vi) € OIRn)I(vl—v .,vi-vo) € ¢(n,R)}

03" -
A(n,R) is full of dimension n.

We finish this section with a useful

(4.6) Lemma. Let F C 6(V) satisfy the chain condition. If
(vo,...,vp) € F then
- -1

lLlnkF(vo,...,vp)l = sP
Proof. It is sufficient to consider the case F = &(p+1) and
(vo,...,vp) = (1,...,p+1). Then

Link;(vo,...,vp) = (GTP+1)/(1""’p+1))<p-1
Define AP to be the ordered set of positive integers < p+l. As

is well known |Ap| = AP, the standard p-simplex and

|Ap|p__1 = sP"1. Now we have

N

{(io,...,ik)|1 < i. < p+l, ij < ij+1}

J
Ny (@(p+1)/(1,...,p+1)).

kAp

So we find

N Ap = 0(p+1)/(1,...,p+1)

*

(compare (4.3)) and hence

|Link;(v0,...,vp)| | (COCp+1)/(1,..,p+1)) ) |

<p-17+»
|(01p+1)/(1,...,p+1))*|p_1

IN*A lp-—l
sP-1

n

which ends our proof.

[

5. The Zn-construction.

In this section, F is a full subset of @(V) of dimension d.

Take (VO,...,VP) € F and define &

F(VO""’VP) z {(wo,...,wq)l(vo,...,vp,wo,...,wq) e F}.
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Evidently F y & F. From the definition (4.5), it

P

VO,.I.’VP
a sort of "transitivity property"

(VO,...,V

follows easily F( ) is full of dimension d-p-1. We have

(5.1) (F ) = F

(vo,...,vp) (vp+1,...,vq) (VO,...,Vq)

for (VO""’Vq) € F. These subsets of F play a crucial role in
our discussion.
Consider now Link;(vo,...,vp). The symmetry condition
implies that deleting (VO,...,vp) gives rise to a morphism
Link;(vo,...,vp) - F(vo,...,v )
On the other hand, we can construct Link;(vo,...,vp) from
by inserting (vo,...,v ) in the correct order

P
The Zn-construction is just

F
(vO,...,vp)

in the sequences of F(VO""’VP).

the abstract formulation of this process. We give a formal
definition first and then proceed to investigate some of its
properties.

Take n+1 elements ZysreesZos all distinct and not in V.
Let Vn =V u {zo,...,zn}. There is a projection

n - O(Vn)\ﬁ( {zo,...,zn}) -+ (V)
given by deleting the Zy - Let Z = (zo,...,zn), and define
- . — - —

z F=({ve G(Vn)\(O({zo,...,zn})lz < v, z,V € F}.
So Z_4F = F. The restriction of t, to Z.F defines a projection
ZnF - F, again denoted L We have a section Yy ° F -» ZnF,
defined by

Vo G (vU,...,vP) H-(vo,...,vp,zo,...,zn)
Observe that indeed we have for (vo,...,vp) el

Link;(vo,...,v ) = 72 (F ).

P P (vO,...,vp)

The main result on "Zn" is the description of %o given in (5.2).
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But first we have to make some preparations.
- . - - .
If w = (wo,...,wm) € ZnF then since z < w there is a

$ : {0,...,n} = {0,...,m} such that w = z.. We define the

¢(1i) i
¢(0). If there is an

position pos, of zq in w by pos, (w)
20

i > ¢(0) such that ws € V we call w of general type. If not

we call w special. In fact w is special if and only if

; € wn(F). Observe that for (vo,...,vp) € F we have

pos (wn(v .,vp)) p+l, and that ZnF is the disjoint union

O,Ql
of the set of elements of general type and wnF. We want to use

20

these facts to construct a filtration on ZnF.

Define

X {w € an|3 of general type}

and for q = 1,...,d+1

Xq = XO U wn(qu_l)
Evidently Xd+1 = ZnF, so we have a filtration
XO C X1 c ... C Xd+1 = ZnF

We can now state our theorem.

(5.2) Theorem. Let F C &(V) be full of dimension 4, n = 0.
Then we have a filtration as defined above.

Xg € Xy C vov ©Xypq = Z.F

on ZnF such that

X, | F|

= |Zn_1

q
% 1 /1%y _q ] = v sd|z, _,F
4 q-1 (vo,...,v
q-1
for q = 1,...,d and

|Xq41171%4) = vV S
(v 0,...,vd)€F

Furthermore, Ly ZnF -+ F admits a section.
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Proof. The section p, was constructed above.

Now consider XO' By taking (zl,...,zn) we can form Zn-lF‘
There is an injection

1 Zn-lF = XO
given by sending (wo,...,wp) € zn-lF to (ZO’WO""’WP)'

We wish to define a projection ¥ : X, = Z _,F which is to
give a homotopy inverse in the realisation. To define 7, take

(wo,...,wp) € XO. Assume poszo(wo,...,wp) = j. Then define

n(wo,...,wp) = (w .,wp).

j+1’l.
Because (wo,...,wp) is of general type, the sequence
(wj+1,...,wp) contains an element of V, so by the chain

condition it lives in 2 _,F. It is easily seen T is a morphism

- - -
of posets such that wi = id and im(w) < w for w € XO

F
n-1
Then I(2.1)(ii) shows |i] and |w| are homotopy inverses of

each other. This shows |X,| = [Z__,F]|.
We want to use (1.3) to describe |Xq|/|Xq_1| for

q = 1,...,d+1. So we first consider Xq\Xq_l- As
X

Xq V¥ (Fgl ) xq\xq_1 = wn(qu_i\ng_z) or
Xq\){q_1 = wn{(vo,...,vq_l) € F}

So Xq\X is discrete. To use (1.3) we have to compute "Links"

q-1
first. We have

Link; W (Vgs--esv ) = wnLink;(vo,...,v

g-1

q-1
and applying (4.6) we have
. = _ Q-2
|L1nkxq—1wn(v0,...,vq_l)l = S .
On the other hand
.+ .
Link (g (vgse eV }) = Llnkxo(wn(vo,...,vq_l))

Xq_1 q-1

since Xq_1 = Xg Vv (F . Just as we compared X, and Zn- F,

<q-2’ 1
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we want to compare Llnkxo(wn(vo,...,vq_l)) and

Z (F ).
n-1 (VO""’Vq-l)

We think of Z (F )) as constructed with the
-1

n-1 (VO""’V

q
elements ZgssessZ- The map

i Z (F
1(v0,...,vq_1) n-1 (VO""’Vq—i) 0

given by
l(vo,--o,vq-l)(wo,bln,wp) = (VO""’vq—l’zo’woi*"':wp)
is a morphism of ordered sets. To define a homotopy inverse,

take (wo,...,wp) € Linkxo(wn(vo,...,vq_i)) and define

TT(vO,...,v _1)(W0"",WP) = "(WO""’WP)' One readily sees
.o € Z F Furth
“(VO yeos ,vq_i)(wo, )wp) n_1( (VO y - ,vq—l)). ‘JI‘ BI‘mOI‘e
m i = id and for
(VO3-.-,Vq_1) (VO,‘-"Vq-"l-) Zn—l(F(VO’...,ani))

—’ .
all w € Llnkxo(wn(vo"“’vq-l)) we have

- - . .
,vq 1)ﬂ(v0, ’Vq 1)(w) <w. Again by I (2.1)(ii) we

0,---,Vq_1)| and |1r(vo,...,v 1)' are homotopy
inverses, soO

N
| Link (g (voseeeyv )Y =2 _,F
Xq—l n 0’ *Tq-1 n=1"(vys...,
By (1.3) we now find for q = 1,...,d+1

| -
vq-l)

IX |/71X__.| = V S(Hopf(|Link (P (Voseeesv 1))
1 q-1 (vo,. ’Vq—i)eF s Xq—l n 0’ g1t
|L1nkxq_1(wn(vo,...,vq_l))l))
-2

= Vv S Hopf(si™4,|Zz__,(F |)
(VO’ oLV 1)€F n-1 (vo,...,vq_lf

= v sz __.(F ) |
(VO"'°’Vq—1)EF n-1 (VO""’vq—l)

In case q = d+1, Z (F ) = ¢ and sd*1(¢) = s<. =

(vo,...,vd)

In the following corollary, we give sufficient conditions

for the sphericity of ZnF.
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(5.3) Corollary. Let F C &(V) be full of dimension d. Assume

F is d-spherical, and for all (VO""’Vq) € F that

F is (d-q-1)-spherical. Then Z_F is d-spherical and
(vgse ,vq) n
ﬁd(cn) : Ed(ZnF) - ﬁdF is split surjective.

Proof. Induction on n. The case n = -1 bLeing trivial, assume
ne=0. Let
XO C X1 c ... C Xd c Xd+1 = ZnF

be the filtration on ZnF of theorem (5.2).
By (5.2), |X,| = |2 _,F|. As 2 _,F is d-spherical by the
induction hypothesis, so is Xg- Hence it is enough to show that

Xq is d-spherical if X is.

q-1
Assume Xq_1 is d-spherical. By (5.2) Xq is also d-spherical

if for all (VO""’Vq—l) € F the poset Zn—i(F(VO""’vq-l)) is

d-gq-spherical.

For (v ,...,vr) € F( we have by (5.1)

q VO""’Vq-i)
(F(vo,...,vq_i))(vq,...,vr? - F(vo,...,vr)
S0 (F(Vo”"’vq—l))(vq""’Vr) is d-r-1 = (d-q)-(r-q+l)-spherical.
We now apply the induction hypothesis to Zn-l(F(VO""’vq—i))

to show it is d-q-spherical.

Finally, the section wn of & h yields the desired splitting.
X

We finish this chapter with a sketchy account of the

relation between CM and the Zn—construction.

(5.4) Corollary. Let F C 0(V) be full of dimension d. Then F
is d-dim CM if and only if F is d-spherical and for all

(vo,...,vq) € F, the poset F(vo,...,v y 1is d-q-1-spherical.
Proof. "only if'". Since F is CM, LinkF(vo,...,vq) = ZqF(Vo""Vq)
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is d-q-1-spherical. Since the projection

: Z2_F
tn q (VO,...,vq) - F(vo,...,vq)

splits, F(v ) is d-g-1-spherical too.

0> "2Vq
"if". We have to show F satisfies the requirements of (3.4).
Well:
. - q-1
|L1nkF(v0,...,vq)| >~ S
by (4.6) and-

. +
LlnkF(Voa' .. ’vq) = ZqF(VOs- .- :Vq)

which is d-q-1-spherical by (5.3).
Remains to consider for (vo,...,vp) < (wo,...,wq) the
poset ((vo,...,vp),(wo,...,wq)). We have
((vo,...,vp),(wo,...,wq)) = (B’(q—p)/(l,...,q-p))g-q_p_2
= Linké(q_P)(i,...,q—p)
as posets. This is an exercise we leave to the reader. It

follows by (4.6) that ((vo,...,vp),(wo,...,wq)) is

q-p-2-spherical, as required. 7]
Combining (5.3) and (5.4) we finally find

(5.5) Corollapy. If F C 8(V), full of dimension d, is d-dim CM,

then ZnF is d~spherical for all n.

6. The < >-construction.

Let F be a full subposet of &(V) of dimension d. If S
is a non-empty set, define
F <S> = {((VO’SD)""’(VP’SP)) € G(VxS)l(vo,...,vp)EEF}
One easily sees that F < S > is again full of dimension d. We
I

have the following theorem.
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(6.1) Theorem. Let F be a full subposet of &(V) of dimension d.
If F is d-dim CM then F < S > is d-spherical for any non-empty
set S.

Proof. Choose an element s € S, and define ¢ : F + F <8 > by
o(vo,...,vp) = ((vo,s),...,(vp,s)). It is clear that g is a

morphism of posets.

Define

XO {((vo,so),...,(vp,sp)) e F<S > 13151 = s}

and for q = 1,...,d+1

*q

Then we state

XO U {((vo,so),...,(vp,sp)) €EF <S> |Visi # s,p < q}

(6.2) Claim a) X, is d-spherical.
b) For q = 0,...,d, if we have that Xq is d-spherical, then

X is also d~spherical.

q+1

As Xd+1 = F < S >, proving the claim obviously settles

the proof of (6.1).

Proof of (6.2) a) The map g : F * F < S > maps F into X5+ On

the other hand we have a projection

ﬂ:XO"*F

where w((vo,so),...,(v ,sp)) is the subsequence of (vo,...,v )

p p
consisting of the v such that §; = S. Then 7 is a morphism
of posets such that ng = idF and for ((vo,so),...,(vp,sp))ezxO
we have that on((vo,so),...,(vp,sp)) < ((vo,so),...,(vp,sp)).

By I (2.1)(ii) we find that |n| and |g| are homotopy inverse
to each other. As F is d-spherical, XO is d-spherical, i.e. a).

b) We have

35.



Xq+1\Xq = {((VO’SO)""’(Vq’Sq)) EF <S> IVisi # s}

hence Xq+1\Xq is discrete. We find by (3.2)(i) that Xq+1 is

d~spherical if Xq is d-spherical and for each
((VO,SO),...,(vq,sq)) S Xq+1\xq the poset

X ((vo,so),...,(vq,sq)) is d-1-spherical.

To prove this, observe

Link

Link;
q

hence by (4.6)

((vo,so),...,(vq,sq)) = Link;<:s>j(v0,so),...,(v ,sq))

q

|Link; ((vo,so),...,(vq,sq))l - 971

So according to (1.3) and I (1.3) we have

|Linkx ((VO,SO),...,(Vq:Sq))l =

q . R
Hopf(ILlnkxq((vo,sO),...,(vq,sq))I,ILlnkX ((vg>85)5--.

SONCAERD

-1 oot
Hopf(s% ,lLlnkx ((vo,so),...,(vq,sq))l)

7]

+
Xq
So we are finished if we prove that Link; ((vo,so),...,(vq,sq))

= SqlLink ((VD,SD),...,(Vq,Sq))|

is d-q-1-spherical. In case, q = d, we see
T .
LlnkX ((vo,so),...,(vq,sq)) = ¢, so -1l-spherical. Hence assume
q < d.
We have
Link+

X
q

We want to compare Linky ((vo,so),...,(vq,sq)) with
0

N - .
LlnkF(vo,...,vq). We have a morphism

((vo,so),...,(vq,sq)) = Linkxo((vo,so),...,(vq,sq)).

.+ .
Link(v,s...,V -+ Link, (( 5.),..-
0(vo,so),...,(vq,sq) 1nkpiVyg > q) XO Vo>Sg’>»

...,(vq,sq))
defined as follows. Let (wo,...,wp) = Link;(vo,...,vq). Then
(VD,...,vq) < (wo,...,wp) so there is a
¢ : {0,...,9} > {0,...,p} such that (i) < ¢(j) if i < j and
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w¢(i) = v. for 1 = 0,...,q. Now take t

i 6Ci) - 5i

and tj = s if j # ¢(0),...,$(q), and define

stp)).

.,wp) = ((wo,to),...,(wp

“((vgasg)ae s vgss ) Moo
Now we define a morphism

“((VOVSO)"“’(Vq’Sq)> : Llnkxo((v0:so>""’(Vq’sq)) -
-+ LinkF(vO,...,vq)
For ((wo,to),...,(wﬁtp)) € Linkxo((vo,so),...,(vq,sq)), we .
t ,
ake “((VO’SO)""’(vq’sq))((wo’to)’ ,(wP tp)) to be the

subsequence of (WU""’wp) consisting of these w; such that

either w, = v:.| for some j or ti = s.
A glance at the definitions shows that

= id, . .+

LlnkF(VO’“"Vq)

((VO’SD)"“’(Vq’Sq)) that

“((vo,so),...,(vq,sq))o((vo,so),...,(vq,sq?)

and for ((wo,to),...,(wp,tp)) € LinkXO

U((vo,so),...,(vq,sq))“((vo,so),...,(v
< ((wo,to),...,(wp,tp)).

(W stn)seeas(w ot ))
q,sq)) 0°-0 P’ p

By I (2.1)(1ii) we conclude that lLinkx (Cvgssgdse s (v,
0 q

is homotopy equivalent to ILink;(vU,...,vq)l, which is

sq))l

d-q-1-spherical as F is CM.

Take an element ((VU,SO),...,(VP,SP)) € F < S >. Then one
easily sees

(F <SS >) <8 >

= F
((vo,so),...,(vq,sq)) (VO,...,Vq)
Combining this with (5.4) and (6.1) yields
(6.3) Corollary. Let F C O(V) be full of dimension d, and let

S be a non-empty set. If F is d-dim CM then F < S > is d-dim CM.
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ITI. Acyclicity theorems.

1. Introduction.

The aim of this chapter is to prove that certain posets
are spherical, by using the techniques developed in chapter II.

We will show for instance O(n) is n-1-spherical for all n,
and if R is a local ring, then &(n,R) is n-1-spherical for all
n. The proofs are based on building the relevant posets by
simple steps from something with known homology.

If R is local, we will show‘J(n,R) is n-spherical for
all n. We use a different approach here:assumingukm,R) is
m-spherical for m < n, we can show easily ﬁiCi(n,R)) = 0 if
0 € i < n-1. Then we compute generators of ﬁgﬁl(l(n,R)) which
we prove to be zero.

Let R be a subring of Q. By slightly more complicated
methods, but basically along the same lines, we prove &(n,R)

is n-1-spherical for all n and.A(n,R) is n-spherical for all n.
2. The homology of 0@(n).
This section 1is devoted to proving

(2.1) Theorem. For all n, the poset 0(n) is n-1- spherical.
Proof. Induction on n. The case n = 1 is trivial. Suppose n = 2
is given, and we have shown 0(k) to be k-l-spherical for k < n.
We have O(n-1) C &(n), and we know 9(n-1) to be n-2-
spherical. Now define
X = {Vv € 0(n)|(n) # V)

Then evidently O0(n-1) C X; denote by i the inclusion, If we
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define 7 : X = 8(n-1) to be the deletion of n, we get a
projection satisfying pi = idB(n-i) and in(Vv) <V for v € X.
By I (2.1)(ii) we find [i| and |w| to be homotopy equivalences,
hence also X is n-2-spherical.

Now @(n)\X = {(n)} is discrete, hence if we show
(a) Linkx(n) is n-2- spherical
(b) ﬁn_z(Linkx(n)) - ﬁn_zx is surjective
then II (3.2)(ii) allows us to conclude 0(n) is n-1-spherical.
As for (a),we see we can identify Linkx((n)) with Zoeﬁn—I) by
sending n to Zg- Now for (VO,...,Vi) € 0(n-1) we have

Gin—l)(v = O(n-i-2) which is n-i-3-spherical by the
0,..

.,vi)
induction hypothesis. So II(5.3) yields Z30(n-1) = Linkx((n))
is n-2~-spherical.

To prove (b) note that the following diagram is commutative

LinkxF(n)) = Zoﬁ(n-l)
l |5
X - T +  @(n-1)

As ﬁn_z(lcol) is surjective by II(5.3) we have the surjectivity
of

Hn_z(Llnkx((n)))* H _,X
i.e. (b). X

3. The homology of 0(n,K), K a field.

We saw in the last section that the posets 0(n) form a

w

sort of complete family in the sense that 6(n)( )
Vgrt eV
= @(n-p-1). If K is a field, we do not have the analogous

property for the 8(n,K). However, we can repair this by

considering posets 0(n,p,K), defined as follows. Let e ,...,e
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be the standard basis of K", and define for P <n

ey )
P
We have 6(n,0,K) = &(n,K). Furthermore, for all

0(n,p,K) = BTn,K)(e
1’

(vp+1,...,vq) € 0(n,p,K) we have

¢(n,p,K) = 0(n,q,K)

(vp+1,...,vq)

if p < @ < n, by a change of basis. 0f course, 0(n,p,K) is

full of dimension n-p-1. Observe that ©(n,p,K) = &(n-p,K)< kP >.

(3.1) Theorem, If K is a field, then for all n and p such that
n > p the poset &(n,p,K) is n-p-1-spherical.
Proof. Induction on dim O(n,p,K} = n-p-1i. If dim &(n,p,K) = O,
i.e. n = p+l1, then ¥(n,p,K) is discrete and non-empty, hence
0-spherical.

Now suppose we have proved the theorem for
dim &(n',p',K) = n'-p'-1 < d, with d > 1. So assume we are given
an 9(n,p,K) with n-p-1 = d. We have to show &(n,p,K) is
d-spherical.

We firstwant to find a "known piece" of &(n,p,K). To do

this, embed Kn-1

s KN by sending e. b e; if 1 € i € n-1. Then
g(n,p,K) n 9(n-1,K) = o(n-1,p,K) .
By the induction hypothesis, &(n-1,p,K) is (n-p-2) =
= (d-1)-spherical.
Define
XD = {(VO""°Vt) € an,p,K)lgjvj € Kn-l}.
Evidently we have an inclusion &(n-1,p,K) g XO. Denote this
inclusion by i. We want to show |i| is a homotopy equivalence.

The projection

T @ XO -+ 9(n-1,p,K)
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is defined as follows. n(vo,...,vt) is the subsequence of

n-1

(VO""’Vt) consisting of allvj such that vj € K Evidently

T is a morphism of ordered sets, wi = idﬁ(n—l,p,K) and

im(V) <v for all v € Xg- By I(2.1)(ii), |i| and |w| are
homotopy equivalences.

So we have XO is d-1 = n-p-2-spherical. We now glue the
rest of O(n,p,K) to XO and show the result is d = (n-p-1)-
spherical. We glue step by step by defining a filtration on

0(n,p,K). Take for q = 0,...,d+1

1

Xq = Xg Y {lvgsen,v)|Vive @ K075 ¢ < ql.

q 0 1]
As d = n-p-1, Xd+1 = O(n,p,K). We see it is sufficient to prove

(3.2) Claim. (i) The poset X, is d-spherical.

(ii) If Xq_1 is d-spherical so is Xq for q = 2,...,d+1.

So we proceed to prove this.

(i) We have xl\xo = {(v0)|v0 ¢ Kn—i}. As this is discrete, we

can apply II(3.2)(ii) to conclude X, is d-spherical if we show

(a) Linkx ((vo)) is (d-1) = (n-p-2)-spherical for vy € Kn-l.
~ 0 ~ _
(b) Hd—l(LinkXO((VO))) - Hd_l(XO) is surjective for vy € k"1,

First (a). We have

Linkxo((vo)) = {(wo,...,wt) € XO|(VD) < (wo,...,wt)}.

Since Vg & Kn-i, sending z, to v

0

1(V0) XO((vo)). On the other hand, we

have a projection T : Link, ((v,)) =+ Z.0(n-1,p,K) defined
vo) XO 0 0

as follows: if (wo,...,wt) € Link

0 gives an inclusion

ZOO(n—i,p,K) =+ Link

((v,)) first take the
XO 0
subsequence of (wo,...,wt) consisting of Vo and the wj € Kn-l,

then replace vy by zg- Again T(v. ) is a morphism of posets,
0 - -
Tvg) vy = H¥z0(a-1,p,K) 29 (v )Ty (W) < v for all
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w € Linkxo((vc)). By 1(2.1)(i1i) we conclude |ZoﬂTn—1,p,K)|

X
0
If (WD""’wt) € O(n-1,p,K), then for t < n-p-2

and |Link ((VD))I are homotopy equivalent.

0(n-1,p,K) ) = (n-1,p+t+1,K). By the induction

(wo,...,wt
hypothesis, this is (n-1-p-t-1-1) = (d-2-t)-spherical. If

t = n-p-2, U(n—l,p,}()(w = ¢, hence -1-spherical.
D’

.,wt)

IT(5.3) then yields Zog(n—l,p,K) and hence LinkX ((VO)) is
0
d-1-spherical. This settles (a). Now (b). A straightforward

computation shows the commutativity of

T

. (vp)
LlnkX ((vo) S

—*-—*ZOO(n—l,p,K)

0 |
| 2
Xq I ~+ G(n-1,p,K)

The horizontal arrows are hopotopy equivalences, and by II(5.3)

~

Hd_l(lcol) is surjective. Hence (Db).

.. n—-1 .
(i1) As Xq\xq_1 = {(VO"“’Vq—l) € 01n,p,K)|Vjvj ¢ K } is
discrete, we can apply 11(3.2)(1) 1f we show that

Link (v sV L))
Xq—l 0 q-1
is d-1-spherical for (VO""’Vq—l) € Xq\xq—l'
In the first place:
Linkxqml((vo,...,vq_l)) = Llnkﬁ(n,p,K)((VO"'"vq—l))
Hence by II(u4.6) we have
. ~ o~ q-2
| Link, ((VU""’Vq—l))I = S
q-1
So 7
|Link,  ((vs.-->v__))| = Hopf(|Linky  (vgs..-sv_ )| 5
Xq_1 0 q-1 Xq_1 0 q-1
N
lLlnqu_l(VO""’vq—l)i)
= Ho f(Sq‘-2 |Link+ (v v
- p 3 x 03 3 q_1
q-1
-~ q-1 . +
= S |L1nkxqul((v0,...,vq_l))l

»

42.



by I(1.3). So we have to show Link} (Vage oosV ) is d-g-
Xqoy 0 q-1
spherical.

If q = d+1, Link. ((vo, )) = ¢ and hence

-5V
Xq—i qQ-1
-1-spherical and we are through. So assume q < d. We have

.ot
Link _ sV __a))
Xq__1 Xq q-1
from the definition of Xq_l. Now for j = 1,...,49-1 we can
choose aj € X such that vi = vj—ajvo € Kn-i. Also,

L]
Va-1 > and

((VO,...,Vq 1)) = Link ((VD,

< v > =< vo,v

O,n.l,vql 1’---

n-1
< VO"“’vq*l > nNK = < vi, ..,vq 1

) € ®(n-1,p,K). Hence we can form

>. Furthermore we have

t
(Vl’ q -1
Z @ (n-1,p,K) . We want to show the realisation
q-1 (v q 1)
of this is homotopy equlvalent to Link} ((Vpsgee-sV ).

Xq—l 0 q-1
We have an inclusion

Z - O(n-1 P K) ' !
q_l q 1 ¥ (Vl,---,vq_i

-+ Llnkxo((vo,...,vq_1

for ZgaresZqaqe On the other hand

) -

),
qu_l

y* Llnkxo((vo,...,vq_1

- Zq_ H(H-i,p,K)(v.

is defined by: ﬂ(vo,.._’vq_l)(wo,...,wt) is the subsequence of
(wo,...,wt) € Linkxo((VO""’Vq—l)) consisting of VgaeesVqo
and the W e K" 1 with vs replaced by Z5 It is an easy
exercise in linear algebra that this lands in
Zq-10(n—1’P’K)(v',. Vé 1). As before
m i = id
(VO,...,Vq_l) (VD,...,Vq_l) q 10(“ 1,p, K)(V' ":vé_l)
and for w € Link, ((V.,...,V ))we have
XO 0 q-1
- -+
i T (w) € w. Hence by I(2.1)(ii)
(vo, "’Vq—l) (VO""’Vq—l)
Link, ({(vAs...sV N} o= |2 O0(n-1 K) .
| XO 0’ >"g-1 | | q-1 2P (vi,...,vq 1)|
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So it remains to show Zq_lﬁ(n—l,p,K)(v.

1,..-,\,&_1) lS d"'q-

spherical. But we have

Z (n-1,p,K) '
q-1 .,vq__1

Once more, we see from the induction hypothesis (stated at the

vi,.. ) = Zq_leTn-l,p+q—1,K)
beginning of the proof of (3.1)) and II(5.3) this is
n-1-p-q+1-1 = d-gq-spherical. This finishes the proof of (3.2)

and hence bf theorem (3.1).

From II(5.4) it follows we can reformulate our result as

follows.

(3.3) Corollary. If K is a field, then for all n the poset
o(n,K) is n-1-dim CM.

4, Euclidean rings.

In this section we wish to extend the result of section
3 to a larger class of rings. As our reasoning was partly
geometrical, we wish to consider rings that allow certain
analogous geometrical arguments. A good choice appears to be

Fuclidean rings. We give a definition first.

(4.1) Definition. A commutative ring R is called Euclidean

if we have a function p : R ﬂ-ND = N U {0} such that
(1) H(a) = 0 if and only if a = 0, u(1) = 1.
(ii) if a,b # 0 then u(ab) = u(b).
(iii) There are functions k,p : R x R\{0} = R with the
properties: for all a € R, b € R\ {0}

a = k(a,b)b + p(a,b)

uip(a,b)) < u(b)

By,



Furthermore, if u(a) < u(b) then k(a,b) = 0, pla,b) = a.

-

We first give some properties. If b is a unit, then
u(b) = 1; on the other hand, if u(b) = 1, then
1 = k(1,b)b + p(1,b) with u(p(1,b)) = 0 so p(1,b) = 0 and
b™! = «(1,b), i.e. b is a unit. A Euclidean ring is a

principal ideal domain.

Examples. i) If K is a field, define p(0) = 0, u(i) = 1 if
A F 0.
ii) If R = Z define u(z) = |z|.

iii) If R is a subring of @, then R = Z[%Ip € S] for some set
of prime numbers S. An element r € Q can be written as
r = rgri where rg is a product of prime numbers in S or their

inverses, and iré is a product of prime numbers not in S or

their inverses. We define |r|g = lrél, and we have
Irtig = Irigltlg for all r,t € Q.

For r € Q\{0} we have r € R if and only if rg € Z. Define
u(r) = |r|g for r € R. We claim |. | makes R into a Euclidean

ring. So let a,b € R. Write a = asaé, b = bS bé as above. Then
we have by division in 2
al = gbg + r
with |r| < Ibél. Now we have
= -1
a (asbS q)b + asr

As IaSrIS z |r'|S < |r| < |bé| = |b|. we are through.

S
iv) If R = Z[ /2] define pla+byZ) = |a?-2b?}

v) If R = K[T], the ring of polynomials over a field K, then
define p(f) = deg(f) + 1, u(0) = 0.

In cases ii), iii), iv) and v}, the division algorithm yields

us.



the existence of k and p.

If R is Euclidean, then each finitely generated projective
over R is free, so a sequence (vo,...,vq) of elements in R"
is an element of &(n,R) if and only if < vo,...,vq > is a
direct summand of R" and rank < Vgre Vg > = qg+1.

For a given ring R, denote by CPEERETL-N the unit vectors
in R™. As in the field case, define &(n,p,R) = U(n,R)(

el,...,ep)

for p < n. Write ®(n,0,R) = 6(n,R). For any R, &(n,p,R) is full
of dimension n-p-1. Also,for p < q < n we have if

( ,...,vq) € g(n,p,R) that

Vp+1

C)'(n,p,R)(v = &(n,q,R)

p+1,....,vq)

We can now state the analogue of (3.1) for Euclidean rings.
Observe it is in fact an extension of (3.1) because of example

1).

(4.2) Theorem. Let R be a Euclidean ring. For all n and p such
that p < n, the poset &(n,p,R) is n-p-1-spherical.
Proof, Induction on dim &(n,p,R) = n-p-1. For n-p-1 = 0,
¥(n,p,R) is discrete and non-empty, hence O-spherical.

Now suppose we have shown &(n',p',R) is n'-p'-1-spherical
for n'-p'-1 < d with d 2 1. Then we have to show if n-p-1 = d
that O(n,p,R) is d-spherical.

First we define an infinite filtration on 9(n,p,R). To

do this, we look at the last (nth) coordinate of vectors in RP.

(1)

If v € Rn, we shall write its coordinates as v ,v(n),

and we use u(v(n)) to measure v. Now define for q = 0

Xq ='{(v0,...,vt) € G(n,p,R)IHju(vgn))Q ql.
Obviously the Xq are subposets of 9(n,p,R) such that Xq C Xq+1
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for q = 0, and

Lim X = 6(n,p,R).

q

(4.3) Claim. i) X4 is d-spherical.

ii) If for q =2 1, Xq is d-spherical, so is Xq+1.

Taking this claim for granted, we can easily show
o(n,p,R) is d-spherical. In fact, because

O(n,p,R) = lim Xq
we have

|o(n,p,R)| = limlqu

and hence

H,|0(n,p,R)| = 1lim ﬁ,lxq|

so indeed our claim (4.3) yields O(n,p,R) is d-spherical.

Before proving (4.3) we first want to make some
preparations. Define for q = 0
o = {(VO,...,Vt) e ﬁ(n,p,R)IVju(vgn)) < ql

and for q 2 1

We take U0 = 60. We have inclusions

which satisfy

(4.4) For all q =0, |i |ié| andlial are homotopy

ql’
equivalences.
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To prove this, define "q : Xq 4-8q as follows:

"q(VO""’Vt) is the subsequence of (VO""’vt) € Xq consisting
gn)
J

ordered sets, “qiq = idg , and iqnq(35 <V for all v € X

Hence by I(2.1)(ii),|nq| is a homotopy inverse to |iq|.

of the V5 such that p(v ) < q. Then “q is a morphism of

Defining na = waUq, we have of course that |né| is a
homotopy inverse to |ié|. As the diagram above commutes, |ia|

is also a homotopy equivalence.

Now we prove (i) and (ii) of claim (4.3).
i) We have 0, = 6(n-1,p,R) and |&,;| = |X | by (4.4). By the
induction hypothesis, XO is d-1-spherical. Proceeding as in

the proof of (3.1), we find that U, is d-spherical, because

1
a is a unit in R if and only if p(a) = 1. Then by (4.4) we

conclude X1 is d-spherical too.

ii) Suppose we know Xq is d-spherical. As qu+1| = qu+1|’

we only have to show Uq+1 is d-spherical. We define
Yp = xq v (G€+1)$b~1

We have a filtration on Uq+1
Xq = YO = Y1 .- & Yd+1 - Uq+1

We already know Xq is d-spherical so we have to show: 1if Yr
is d-spherical so is Yr+1‘
We obviously have
- (n), _
Yo\ Yp = {lvgseviyv ) € 6Tn,p,R)|Vju(vj ) = q+1}.
This is discrete, so we can apply II(3.2)(i) to show Yr+1 is

d-spherical if we show LinkY (vo,. .,vr) is d~-1~spherical for

r
(VO""’VP) € 0(n,p,R) such that u(Vgn)) = q+1 for all j.

Now
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Link§ (Vgseerav,) = Link,
r
so by II(4.6)

0(n ,p R)(V ’Vr)

]Link— -1

~ o'
Yr‘(vo’...,vr)l —"S

Hence

1]

|Linky, (vgseensv )]
r
Hopf(sF™1 ]Llnk (v

0""’Vr)l)

st ILlnkxévo,...,vr)l

Now for r = d, we have Link;évo,...,vr) = ¢, s0O
ILinkY (VO""’Vr)l = 5971 4 e, Linky(vg,...,v, ) is d-1-

T T
spherical. Hence we can assume r < d. We have to prove then

N .
LlnkYr(vo,...,vr) = Llnkxq(VO""’vr)
is d-r-l-spherical.

We are going to break down Linky (VO""’VP) for r < d

q
step by step. Define
= (n)
Bﬁ,(vo,-",vr>‘{(w0""’wt) € ORIy v VR0
(n)
={ yewe € &(n,p,R
xq,(vo,...,vr) Wy W) (n,p, >(V0 R y 135 uCw;

In fact we have

' = @ R &
6q,(vo,...,vr) (n,p, )(VO""’Vr) n q
= R Nn X
Xq,(vo,...,vr) o(n,p, )(VO,...,VP) q
Sending Zgaee 2, to Vgse sV, We have
Llnqu(VO""’vr) = ZP(Xq,(VO’ "’Vp))
The inclusion eq’(v ’Vr) - Xq,(vo,. ’Vr) yields an
inclusion morphism
1 ' X
* ZP(gq,(vO,...,vr)) ~ Zr( q’(VO""’Vr))

whereas ﬂqu defines a projection

Qs (Vgsenesvy)
This yields a projection

)

NN I N NP

moe Zr(xq,(vo,...,vP ) - Zr(eq,(vo,...,vr)
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LwW,) € 72 (X

In fact, for (wy,...,w, r g, (vys. ..

v )), we have that
nCwo,...,wt) is the subsequence of (WO""’wt) consisting of
the wj such that u(wgn)) < q, and ZgsesesZne We see 7 is a
morphism of ordered sets such that @i = idZ (o

r q,(vo,...,vr))

and im(W) < W for all w € Z (X v )). As usual, I(2.1)
3

q,(vo,...
(i) yieXds |i] and || are homotopy equivalences. It remains

to show ZP(Oﬁ,(Voa---

The inclusion

v )) is d-r-1-spherical.
3

¢ : Zr(Oq,(VO,...,V )

) ) —+-Zr(tif(n,p,R)(vO’-__',v ))

admits a section
LA Zr(ﬁzn’p’R)(vo,...,vr)) q-zr(g (v e eV )

which we shall define in the following. If

(WO""’wt) € ein,p,R)(VO,. LV’ then (VO""’Vr’WO""’wt)E
r
€ o(n,p,R) and hence '
wo(wo,...,wt)=(w K(w(n) (n))v ..,wt—K(wiN),vén))vO)

is an element of &(n,p,R). However, we have

(n) (n) (n)

(
wjn) = K(wgn),vén)>vén) + P(wj »V (n)) with “(p(w Vg ) <
< p(v(n)) = q+1. As p(w(n),vén)) is the last coordinate of
_ (n) _(n)
Wy nc(w:l »Vg )vg We have wo(wo,.. -sWy) € ﬁd’(vo""’vr).
Hence ¢, is a map O(n,p, R)( 9,, 5v) - e'q,(vo,...,vrl)' g
(n) (n) (n - =
nlw 3 ) < q, then »c(w »Vg 0, so l"0'6 ’(VO""’VI‘) N
= ider . Also, wo is a morphism of posets.

q,(vo,...,v )
One easily sees wo lifts unlquely to a morphism

Yy 2 (O‘(n,p,R)(v beeeavy )) (& )

r q:(vos '-:VP)

which satisfies wIZ (8 ) = id, hence y¢ = id and

(VO, . Vr)

H*(w)H*(¢) = id. We find Z (6 ) is d-r-1-spherical

(VO’ "’Vr)

if Z_(&(n,p,R) )} is. But the latter poset is
r (VO,..

"Vr)
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isomorphic to Zr(ﬁ(n,p+r+1,R)). From the induction hypothesis
and II(5.3) we conclude this last poset is n-p~r-1-1 = d-r-1-
spherical. We have proved claim (4.3) and hence also theorem

(4,2). B
Analogous to (3.3) we have

(4.5) Corollary. If R is a Euclidean ring, then the poset
g(n,R) is n-1-dim CM.

5. Affine geometry.

The aim of this section is to prove for a field K that
A(n,K) is n-spherical and even n~dim CM, and that the same
holds for A(n,R) if R is a subring of Q.

This section contains an introductory part in which we

consider Tits buildings and the like, and the proof proper.

We start with some remarks on the homology of skeletons
of simplices. As usual AP is the ordered set of positive
integers 1,...,p+1. Its realisation is the topological
p~simplex AP. A non-degenerate k-simplex corresponds to a
sequence i0 < ,.. < i, . We denote this simplex by A(io,..;,ik)

k
when considered as an element of tk(AP). If 1 = iS+1 for

s
some s, then ij < ... <'ik corresponds to a degenerate k-simplex
A(io,...,ik) which is zero in Ek(AP). If ¢ is a permutation
Of 0,...,k, then Ai_g,...siy) = eo)Alig, . 51)) in e, (aP).
This corresponds to a change of orientation. For any
io,...,ik € {1,...,p+1}, we denote the boundary of A(io,...,ik)
by y(io,...,ik), i.e.
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k .
Y(igs-eesiy) = jfo(-1)3a<io,...,ij,...,ik) .
Obviously for o € Sk+1 we have Y(ioo""’ick) = e(c)y(io,...ik)
Becausi §% = 0, we have for igse-eriy € {1,...,p+1}
z (-1)37(10,...,§j,...,ik) =0 .
J=0
Taking i0 = i, and, for j = 1,...,k observing that

- . . c y_¢_ayd3-1_ . . .o .
Y(l’ll""’lj-1’1j+1""’lk)—( 1 Y(ll""’lj—1’1’1j+1""’lk
we conclude «

Y(li""’lk) = jle(ll,...,lj_i,l ’lj+1’°"’1k)
Obviously we have
U(N,Ap) = {(io,...,ik)ll < iO < ... < ik'< p+1}
So S(N,AP) can be identified with the set of all non-empty
subsets of {1,...,p+1}, ordered by inclusion. By II §h&,
|U(N*AP)| is the first barycentric subdivision of AP. We nhave
an inclusion of chain complexes e, (AP) *”E,(G(N*Ap)), and we
identify €.(AP) to its image in ef®(N,A)). We find
A(lo,...,ik)= z e(o){loo} c... C {100""’lck}
UGSk+1

and so

k 3 -~
YCigseooaiyd= B 138G, 3y, 1)

k . 370
_ PR . . ;- .
= .§0( 1) és s(c){lco} ... C {100""’103""’10k}
1= 0SSk +1
gj =1

Let 0 € S, 4 be such that oj = j and take 1 = ge(j,...,k). Then
5(0){100} c... C {100,..10j,...,10k} =
:(—1)k-]€(r){iro} [ ol § A TR L

whence

. C o X . . .
Y(lo,...,lk)-(—l) z E(O){lao} cC...C {100""’lo(k—1)}'
0€S5) 41

For 0 < k < p, the k-skeleton AE of AP is a homology

wedge of k-spheres, the homology being generated by the
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bounderies of the k+l-simplices in AP, i.e. by the images of
the Y(io,...,ik+1) for iO""’ik+1 € {1,...,p+1}. We denote
this image by Y(io,...,ik+1), too. By II, §4 we see that

|U(N‘Ap)sk| is the first barycentric subdivision of AE. We

conclude

(5.1) Lemma. Let p be a non-negative integer, 0 <1 < p.
(1) UTN*Ap)sa is l-spherical, Hl(ﬁiN*Ap)sn) being generated by

: : o_ay1t1 : . .
Y(lo’...,ll"'i)_( 1) E E(O){lco}goncg{loog---,l-o,l}

‘Gesl+1

for ig,...5iy,4 € {1,...,p+1}. Moreover, if i_ = i,

s ¥ t, then Y(io,...,il+1) = 0 in Hl(B(N*AP)gl).

for some

(ii) For il""’il+2’ ie{1,...,p+1} we have
1+2
Y(li""’ll+2)=j?1y(11"'"lj—l’l’lj+1""’ll+2)'

For the moment, take R to be a Euclidean ring with field
of fractions K. We define the Tits building of R by

T(n,R) = {V ¢ R"|R"/V free, V # 0,R"}
for n = 2, and T(1,R) = ¢. The affine-Tits building of R" is
defined by

A(n,R) = {a+V]|a € R", R™/V free, V # R"}
for n > 1, and A(0,R) = ¢. Both T(n,R) and A(n,R) are partially

ordered by inclusion.

One readily sees that T(n,R) and A(n,R) are non-empty if
n= 2 and n 2 1, respectively, and they are homogeneous of
dimension n-2 and n-1, respectively.

We can consider R" as a lattice in K™ using the standard

bases €q50-+3€ Hence we have a map

nc

T(n,RY : T(n,R) = T(n,K)
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sending V ¥ KV, which is an isomorphism as the reader can prove
easily, since R is Euclidean and hence a P.I.D.

For points Vg s sV € R" we define

A(vo,...,vk) = vy t (K < Vl_VO""’Vk_VO> n rR™M

Evidently A(v .,vk) € A(n,R) v {Rn}, and if a+V € A(n,R)

0’.‘
is such that Vgse-sVy € a+V, then we have A(VO,...,vk) c a+V.
OQur first result concerns the homology of T(n,R) and
A(n,R). This result is well-known, see for example Quillen [9],

Lusztig [u4]. Our proof is based on Lusztig's proof.

(5.2) Proposition. Let R be a Euclidean ring with field of

fractions K.
(i) For n 21, T(n,R) is n-2-spherical. Moreover, for n > 2,
ﬁ%_z(T(n,R)) is generated by elements

g(Lys.-.5L )= £ ela)l_; CK(L

+L )NRT G ...
oESn g

ol gl

n
vee SKCL 4 4 oot Lq(n-l)) Nn R

for lines Ll""’Ln in T(n,R). If rank (ELi) < n, then
g(Ll,...,L ) = 0.
(ii) For n = 0, A(n,R) is n-1-spherical. For n > 1, the group

ﬁﬁ_l(A(n,R)) is generated by elements

g(vo,...,vn)=dE§ E(O)A(VOO)E"'EA(VUO""’Vo(n—l))
n+1

= ph .
for vg,...,v SRV, IF rank‘<v1-v0,...,vn-v0> <ni.e. VgaesesVy

not in general position in K™, then g(vo;...,vn) = 0.
Proof. (i) As 1t(n,R) is an isomorphism, we may assume we WOrk

with a field K. Assume n = 2.

Define
T(n,K)= {{Ly>---5L }|L; € T(n,K), dim Ly=1, L; # Ly for
i# j, ZL; * K"}
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and order it by inclusion. Define
v o %(n,K) -+ T(n,K),{Ll,...,Lk}'* ZLi.
We see v is a morphism of ordered sets. For V € T(n,K) we have
WV = {({Ly,.. .0 ) € T(n,K)IViLi C v}.
We see that any finite subset of v/V has a supremum. It follows
that |v/V| is contractible. By theorem I (2.2) we conclude [v]
is a homotopy equivalence.
Now T(n,R} is n-2-dimensional, so we must prove
Hi(T(n,K)) = 0 for i € n-3. We clearly have to show: given a
finite number of elements in T(n,K), then they are contained in
a subset of T(n,K) which has vanishing homology in dimensions
< n-3.

A finite subset of T(n,K) is clearly contained in a subset

of the following 'type. Take distinct lines LO,...,Lp in Kn, and
define
T = {{L; 5..-5L; } € T(n,K)|V:L, € {Lqs-.-,L
{LD""’LP} {{ 113 ’ lk} ’ | j lj { 0?* ] P}}
Take
= L. 4¢..,L; v.L. € {Ly,...,L .
A{LO’.-.,LP} {{ 11’ 3 1k}‘ ] lj { 0) ? p}}
Evidently
= g(N )
A{LO,...,LP} +Bp
by sending (ii""’ik)’ with il < im if 1 <m to {Lii,...,Lik}.

T i 1 T identifies
he i1nclusion {LO’ "’Lp} -+ A{LO""’Lp} identifie

T
{Lgseeesby)
Since for k < n any {L. ,...,L.
1 *k
of T{LO’ "Lp}’ we see |T{L0,...,Lp}|can be identified with a
subcomplex of AP containing the n-2-skeleton, cf. II(4.3),

with a subset of G(N,AP) having the chain property.

i 1 t
} € A{LO""’Lp} is an elemen

ITI (4.4), hence has zero homology in dimensions < n-3.

As each finite subset of T(n,K) is contained in some
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fad

T{LO""’Lp}’ the group Hn_z(T(n,K)) and hence also Hn_z(T(n,K))
1s covered by the images of the Hn-Z(T{LO,...,LP})' For each
set of distinct lines LO,..,LP we have a surjection

H (A ) ) »H_ (T )
n-2 {LO,...,LP} <n-2 n-2 {LO,...,LP}

because of the above. Applying (5.1)(i) we see that

P ~

Hn-Z(T{L“ L }) is generated by elements
3oy

= C(oayn=1

Y(Mi’--o,Mn)-( 1) Ués E(0>{M01}S---E{Moi,--o,MU(n-l)}
with Ml""’”n € {LO,...,LP}P Now if EMi4¢ Kn, then
7(M1,...,Mn) is sent to an element of

im(Hn_z(U/zMi) - Hn_z(T(n,R)))

which is zero because |v/EMi| is contractible. As the image of

Lo d

- . . -1
Y(Mi""’Mn) in Hn_z(T(n,R)) is equal to (-1)" g(M ..,Mn),

12"
this settles (i).
(i1) This is proved analogously, by defining
K(n,R) = {{VO,...,vk}lvi € Rn,vi # vy if 1 # 3,
Alvg,-..,v,) # R}
and
- K(n,R) -+ A(n,R)

by C({vo,...,vk}) = AlVg,. ey ).

Remark. It is clear that it follows from (5.1)(ii)that the

g(Ll""’Ln) satisfy the relation
n
g(Ll""’Ln) = _2 g(Lla--':Li_isL:L
1=1

g>---sb» L € T(n,R) and in ﬁ%_i(A(n,R)) we have

TRCERRREL Y

for lines L

the relation

n
g(vo,...,yn) = ?Og(vo,...,vi_l,v,vi+1,...,vn)

v € R™.

for v.,....v
0, > n, }

For V € T(n,R) we can take a complement W such that
S6. '



VeéW-= R™. Then the map

T(dim W,R) - Link;( (V)

n,R)
given by U >V @ U for U € W, is an isomorphism, hence (i) of

(5.3) Lemma. i) For V € T(n,R) we have

N ~ Cas
LlnkT(n,R)(V) = T(n-dim V,R)

ii) For a+V € A(n,R) we have

. Lt .
LlnkA(n,R)(a+V) = T(n-dim V,R) .

Proof: ii) For V = 0, we have by taking a as origin

+
A(n,R)

and for dim V > 0 we find, again by taking a as origin

Link (0) = T(n,R)

+ . +

T(n~dim V,R)

Link

R

by 1i).

Next we consider 0(n,R)_ _,. By theorem (4.2), 6(n,R) 1is
n-1-spherical, hence by II(4.u4)(i), E)’(n,R)gzn_2 1s n-2-
spherical. We define

¢(n,R) : O(n,Rl o = T(n,R)}
by ¢(n,R)(v0,...,vk) = < Vs sV >. We have for

(vo,...,vk) € BTH’R)Qh—Z that

htT(n,R)¢(n’R)(V0"'"vk) dim < Vgse- vy > -1

= hta(n,R)sh_z(Vo""’Vk) :
Furthermore, for an arbitrary V € T(n,R)
$(n,R)/V = g(dim V,R)
It is a homogeneous poset of dimension dim V-1 = htg . R)(V)'
3

It follows ¢(n,R) is a homogeneous morphism.
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(5.4) Proposition. Let R be a Euclidean ring, then

H _,(9(n,R)) : H _,(0(n,R) )= H _,(T(n,R))
is surjective for n 2 1.
Proof. For n = 1, both B‘(n,R)gn_2 and T(n,R) are empty, so
there is nothing to prove. So take n # 2. Then for V € T(n,R)
¢{(n,R)/V = &(dim V,R)

is dim V-1 = htT( (V) spherical by (4.2), and by (5.3)

+
T(n,

which is by (5.2) n-dim V - 2 = (n—2)-htT(n’R)(V)-l—spherlcal.

n,R)
y(V) = T(n-dim V,R)

Link
As T(n,R) is n-2-spherical, and ¢(n,R) is a homogeneous

morphism, II(3.3) shows that Hn_2(¢(n,R)) is surjective.
Now we are ready to give the main result of this section.

(5.5) Theorem. Let R be a field K or a subring of @, then
A(n,R) is n-spherical for all n.
Proof. Induction on n. The case n = 0 being trivial, assume we
have for some n > 1 shown that A(k,R) is k-spherical for k < n.
To show A(n,R) is n-spherical, we want to use II (4.4)(ii).
This means we have to proveﬂ(n,R)‘\h_1 is n-1-spherical and
im(H__ (An,R) ¢ _,) = H _,C/n,R)) = 0,
First we define

p = $(n,R) : .{(n,R) -+ A(n,R)

<n-1
by w(n,R)(vo,...,vk) = A(vo,...,vk). Evidently y{(n,R) is a
morphism of posets such that

htA(n,R)(lp(n,R)(vo,l..,vk)) = h-t,A(n’R)< (VD,...,Vk) .
\n—l
Furthermore, for an arbitrary a+V € A(n,R) we have

p(n,R)/(a+V) = .{(dim V,R)
which is homogeneous of dimension dim V = htA(n R)(.a+\.’) and
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even dim V-spherical by the induction hypothesis. Hence ¢(n,R)
is a homogeneous morphism. Furthermore A(n,R) is n-1-spherical
and because of (5.3)(ii)
.t
L1nka+v
which is n-dim V - 2 = n-1-ht

(A(n,R)) = T(n - dim V,R)
A(n’R)(a+V)—1—spher1cal by (5.2).
S0 we can apply II (3.3). We conclude that-J(n,R)<h_1 is n-1-

spherical and-there is a filtration

0=F C€F 4, C..CFyCF_, =H ,nRig 1)
such that '
F_,/Fy = H _ (A(n,R))
o~ ~ -
F _/F = @ H (¢(n,R)/a+v) ¢ H_ ___,(Link (a+V))
q' *q+1 a+VeA(n,R) ¢ ? n-q=-2 A(n,R)

dim V = q

(5.6) Claim. For q = n-1,...,0, if we have that

im(F,, H _,A(n,R)) = 0 then also im(F ~H__,(Hn,R)) = 0.

Since Fn = 0, this claim shows that im(F0 *-ﬁh_ltﬁ(n,R))=0.
We first prove this claim, and then we shall show that it
follows from this that im(F_, - ﬁn_l(d(n,R))=0 i.e.

im(Hn_l(d(n,R) ) — Hn_lhi(n,R)))= 0.

<n-1

Proof of claim (5.6). To prove this, we look more closely at

theorems II(2.4%) and II(3.3). They give a factorisation

f £
; o _In . 1.

with
Ug =.f{(n,R)<q -

such that Uq is n-1-spherical and for q = 0

Fy = Ker(H (An,R) 42 = B 4 (U0

n-1
and, identifying H

4 A(n,R)

1(Uq) with F_ /Fq, we have

n- 1
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Ker(ﬁ
n-

q we have an inclusion

1 Weag) = H

Now for a+V € A(n,R) with dim V

morphism

N .
Yp/atv = LlnkA(n

By virtue of II(2.4) and II1(3.3), this yields an injection

’R)(a+V) - Uq+1

® H (p/a+V) 8 H__._ (Link| (atV)) =~ H__,(U__ )
a+VEA(n,R) n-2-q A(n,R) n-1""q+1
dim V = q
having as its image F_/F Now, to prove our claim (5.6) it

qQ°"q+1”

is enough if for a+V with dim V = q, we construct a subposet
S(V) of;4(n,R)<n__1 with the following properties:
a) S(V) is n-1-spherical.
b) ﬁ;_l(S(V)) qhﬁh—l(uq+1) surjects onto the part
H (b/asV) @ Hﬁ_q_z(Link;(q,R)(a+V)).
¢) Im(H__,(s(vV)) » & _ (in,R)) = 0.

First observe we may assume a = 0, V = < el,...,eq >3

take W = < e cse > Identify p(n,R)}/V with.ﬁ(q,R)

q+l1’" "
and (¢(n,R)/W) N &(n,R) with &(n-q,R). Define

S'(V) = H(.¥(q,R), @(n-q,R))
cf, II. 81. An element of S'(V) can be described as a
sequence (VO""’Vk’WO""’wl) with (vo,...,vk) GE:kq,R)

(w -»Wy) € O(n-q,R), with possibly k = -1 or 1 = -1 though

02" *

not both. It is easy to see in this case

(VO""’Vk’wU""’wl) € ;Kn,R) and we have an inclusion

ng @ S'(V) > .Hn,R).
We define

S(V) = H(-(q,R), &(n-q,R) ).

<-q-2
Then S(V) is a subposet of S'(V) and we can define ny* n¢|S(V).

In fact ny lands in-?(n,Rlin_l.
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By (4.2) 0(n-q,R) is n-q-1-spherical, so by II(u4.4)(i)
U(n'q’R)Sh-q-2 is n-q-2-spherical. By II(1.2)(iv),I(1.5) and
the induction hypothesis we conclude S'(V) is n-spherical,

S(V) is n-1-spherical, hence a). We have a commutative diagram
Ny

S(V) > Hn, R,

| |

n‘
S' (V) ——L—— JKn,R)

As H__,(S'(V)) = 0, im(H__,(S(V)) > H__, (Kn,R))) = 0, i.e. o).

To settle b) we have to look more closely at

fq+2...fnnv S(v) = Uq+1. We have
. (VaseeesVy sWaseesWa) ktl41<q
03 ,k, 0’ ’1
f ceoeol NulVaseeasVy sWhseoa W)=
q+2 nv-oo k70 1 A(vo,...,vk,wo,...,wl) k+1+1>q

We define a y : S(V) d'Uq+1 by

(V ,---,V) .1:_1
ey {07

YV Aseee sV aWayeoo =
0 k*70 Ve <wy,...,w>1 >0.

Evidently fq+2 ....fnnv(vo,...,vk,wo,...,wl) <_y(v0,...,vk,w0,..

.,wl) so by I(2.1)(ii) |fq fnnVI and |y| are homotopic,

+2

so to prove b) we have to show H__,(y) maps ﬁ;_l(S(V)) onto

+
A(n,

Above we saw that ﬁg(ﬂ(q,R)) ® H

Hq(ﬂ(q,R)) 8 Hn_q_z(l..ink Ry V).

.+ .
(LlnkA(n,R)(V)) in

n-q-2
Hn-i(Uq+1) comes from the inclusion
.t
A(q,R) » LlnkA(n,R)(V) > Uy

Now y maps S(V) onto-4(q,R) * Link;(n R)(V)' Identifying

Link:;(n R)(V) with T(n-q,R) by means of (5.3), and defining
Yq ¢ HQGR) = O(n-q,R)q o s -+ Mq,R) * T(n-q,R)
= $(n-q,R) we see

by Yold';(q’R) = idJKq,R)’ Yole’(n-q’R)-ﬂn-q-—Z

we can factorise y as
Y = vqoh(A(q,R), 6(n-q,R)g; o _,)-
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From II (1.2)(iii) we see lh(ﬂ{q,R),GTn—q,R)gh_q_z)| is a
homotopy equivalence. So it remains to show ﬁn_l(YO) is
surjective.

By the induction hypothesis, Aq,R) is q-spherical,
T(n-q,R) is n-q-2-spherical by (5.2), 61n-q,R)<h_q_2 is
n-q-2-spherical, and by II (1.2)

|ACa,R) * U(n—q,R)gh_q_zl = Hopf(Lﬁ(q,R)l,latn-q,R)<h_q_2D

| #(q,R) * T(n-q,R)| = Hopf( |.4(q,R)|,|T{n-q,R}|)

I (1.5) tells us both spaces are n-1~-spherical. A glance at

the proof of I (1.5) shows that the map

Hn—l( YO ) Hq(\A{q,R)) 8 Hn_q_z(e’(n'qaR)%_q_z) >

-+ Hqcﬁ(q,R)) 8 Hn_q_z(T(n-q,R))

is equal to ﬁq(id) ® H (¢{n-q,R)). By (5.4), the map

n-q-2
Hn-—q—2
claim (5.6).

(¢(n-q,R})) is surjective. This finishes the proof of

We have shown so far that im(F, -~ ﬁn_l(ﬁkn,R)D = 0. So
we have a factorisation

F, = H _,(An,R) )

™,

Hn_l(ﬂ{n,R))

ﬁn_l(w(n,R))

1. ¢ I

F_,/Fy = H _;(A(n,R))

Denote the boundary En(ﬁKn,R)) *-En_1(4(n,R)) by &§. We shall
show: given a generator g(vo,...,vk) of ﬁ;_l(A(n,R)), which

we represent by a cycle as in (5.2), there is a k E'En(Jkn,R))
such that &k € En_ltﬁ(n,R)<h_1) and 8k is mapped by p(n,R)

to g(vo,...,vn). This proves im(F_1 - ﬁn_ltﬁ(n,R)))= 0.

We have three cases.

(i) R is a field K. In this case (vo,...,vn) in general
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position in X" means (vo,...,vn) E;ﬁ(n,x). We can identify
ﬂ{n,K)/(vo,...,vn) with BTN,An) by sending i r Viog for
i = 1,...,n+1. Take k = (-1)"A(1,...,n+1). Then
sk =(-1(1,...,n+1) €€ __,(x(n,R)¢ ;). From our definitions
it is clear that Y(n,K) maps &k to g(vo,...,vn). |
(ii) R = Z . Here also, if (wg,...,w ) € JKn,Z ) then
g{wy,-..,Ww ) goes to zero in ﬁn_lﬁﬂ{n,ﬂ )) by the same reasoning.
We prove that each g(vo,...,vn) can be expressed as a sum of
BwgseaesW ) with (wyseonsw ) € Hn,Z).

From the remark at the end of the proof of (5.2) we find

n
for VgsessaVyy W € Z

g(vo,...,vn) = igog(vo,...,viﬁl,w,vi+1,...,vn)
The problem is to choose w suitably.

Define for Vgaee Vg e zg"

|(v0,...,vn)| = |det(v1-v0,...,vn—v0)|.
If I(VO,...,vn)l = 0, then g(vy,...,v ) = 0 and if

|(v0,...,vn)| 1 then glvy,...,v_ ) goes to zero in ﬁ;_l(ﬁkn,m))
as (vo,...,vn) € #Mn,Z ) in this case. So assume
|(v 53V )| =t > 1. We want to find a w € Z" such that
0 n
for i = 0,...,4N

|(v0,...,vi_1,w,vi+1,...,vn)l < t

Induction then shows g(vo,...,vn) goes to zero in ﬁ;_l(ﬁ{n,Z))

for all VooV using the formula above.
Now take v, as origin. Then Vises-aVy is a basis of Qn
n
over {, so we can write w = X a,v. with a, € Q. We first

1=1
prove there is a w € Z" with the properties |ai| < 1 for all

n .

i, and | Z a, - 1] < 1. We finish by showing this is a good
i=1 :

choice for w.
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Define

n
PV s...5v ) = { 2 A;vi]d; € R, 0 <3i; <1},

g -
1 i=1 1

then the map

P(VyseneaVy) > ROUZV, + oo + Tv)
is a bijection. As

n n

y/4 /(Zv1 + ... + %vn)'—-*R /(Z.v1 + ... + Kvn)
and

lz“/(zwl + o.. + v )| |det(vy,...ov )] > 1
we can take a non-zero element in Zn/(Zv1 + ... + an)
which yields a wy e 2% n (P(vi,...,v )\{vo}). Write
Wy = E A iVs with A € Q, 0 < A < 1. We have Ai # 0 for at

i=1

least one i, and we have two cases

a) 0 < Z A < 2. In this case we take o, = Ay for all i,

i=1 .
1.e.nw = W,
b) Z A, > 2. Let J = {i|l. # 0}. Then J # ¢ and we have
n i=1
z Al = X Ai' Now take d = | E A ] - 1, then 1 €4 < |J].
i=1 i€J 1i=1
Now select distinct elements 11""’id € J and define
i€ {il""’id}' Then obviously |a-| < 1. As
n n n
d+1 < EA < d+2 and Ea = EAi-dwe find 1<Ea < 2.
i=1 n i=1 i=1 i=1
So take w = T q.V. = W . "v..~ V. . Then w € ZP, and it
j=1 11 0~ 11 14
has the desired properties,
Now, for i1 = 1,...,n we have
n
|(v0,...,vi*1,w,vi+1,...,vn)|=|det(v1,...,vi_l,jflajvj,vi+1,
. ,vn)|

=|ai||det(v1,...,vn)|

<|(vgsvyseeesv )]

.



because |ai| < 1. Furthermore, we find

|(w,v1,...,vn)| = |det(v1—w,...,vn—w)[
n
= |det(i§1aivi—v1,v2-v1,...,vn-v1)|
n
= |det(( _% ai-l)vl,v2-v1,...,vn—vl)l
n 1=1
= | T oa;-1]||det(v,,...,v )|
i=1 1 1 n
< | vgsvyseansv )
n
since 0 < X o < 2. This finishes our proof of case ii).
i=1

iii) R is a subring of Q. This case is essentially a modification
of the previous one. Write R = ZL%|p € S]. Observe first that
. n
for given VyseesaVy € R
n -
IRV Ry, + ... + Rv )| = |det(v s.svidg -
This is best seen by taking a,,...,a, € R* such that

QqVqsse 0 Vy e 7" and noticing that

n ot
R /(Rv1+...+Rvn)—-(ZP/(Z(a1v1)+...+%(anvn))) 8, R
from which it follows easily.

Now proceed as in case ii). Define for VO,...,Vn e R"

| (vgse-esv)lg = |det(v1~v0,...,vn—v0)|s
. n . -

We have to show: given vg,...,v € R" with |(v0,...,vn|S = £t>1
there is a w € R" such that for i = 0,...,n

| (VO, .« e 0w ,Vi_l,w’vi+1’ . . ’Vn)ls < t-

Take w, representing a nonzero element of RnﬂRv1+...+Rvn).

n
. _ _ , )

Write Wy = z A.vi. Then Ai = Ai,sli,s and there is an m € Z

i
1=1
with |m|S = 1 such that mA ; S € Z for all i. Now m € R*, so
. 3

mw also represents a nonzero element in Rn/(Rv1+...+Rvn),
n

_% AV with Ai,S

1=1

Denote Rc = Z[%[p € sl. Then for r € R, we have r € Z so

n
because |r| = |r|g|rg|we have Ir|g < |r|. We have w, = E AsV

Hence we may assume wg = € Z for i = 1,...,n.



with Ai € RC‘ Now, by addingrones to the Ai, we find a w still
representing a nonzero element in Rn/(Rv1+‘..+Rvn) with
w = Euivi, such that o, € R, and |ai| <1 for 1 = 1,...,n,
and |Za;-1] < 1. As a;€ R,, also lo;lg <1 and as Ry is a
ring, Za;-1 € Ry so |Zoay-1|s < [Zay-1] < 1.

We finish the proof by showing as in case 1i) that this

w satisfies our requirements, now using the |.|S—norm.

For (VO,...,VP) € .+(n,R) with p < n, we have
Jkn,R)( = &(n,p,R) so combining II(5.u4), (4.2)
vo,...,vp)

and (5.5) yields

(5.7) Corollary. Let R be a field or a subring of Q. Then the

poset.ﬂ(n,R) is n-dim CM for all n.

We finish this section by introducing an affine analogue
of ®(n,k,R), and showing this is CM for a field or a subring

of Q.

(5.8) Definition. Let R be a ring, 0 < k < n. Then we define

v'!'(fl,k,R)

{Cvgseresvp) € ORM [ (v =vy,.nn v -v) € 0(n,k,R)

n

A n,n,R) {(v) € (R™)|v arbitrary}.

It is clear that -#n,k,R) is full of dimension n-k for
all n and k with 0 < k € n. One easily sees that

JHn,k,R) E.&(n—k,R)<Rk>, So by II(6.3) and (5.7) we have

(5.8) Corollary. If R is a field or a subring of Q then

{n,k,R) is n-k-dim CM for 0 < k < n.
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6. General acyclicity theorems.

In this section, we consider a ring R with Jacobson
radical J. We want to compare 0(n,R) resp. An,x,R) with

8(n,R/J) resp. .(n,k,R/J). We have the following result.

(6.1) Proposition. Let R be a ring, J an ideal contained in

its Jacobson radical. Then
(i) ©O(n,R) = &(n,R/0)< J" >
(ii) An,k,R) = Kn,k,R/0)< J" >
Proof. (i) Denote the projection R = R/J by «. This gives a
projection k : R" - (R/3)".,

Take a sequence VO""’Vp of elements of R"™ such that
pH1o 2V e rR"

such that (Kvo,...,KVP,KVP+1,...,Kvn_1) € 6(n,R/J). But then

det(mvo,...,xvn_i) = K dEt(VO""’Vn-l) € (R/J)*

(KVO,...,KVP) € ®(n,R/J). Then we can find v

which since J is contained in the Jacobson radical of R, implies
det(VO""’Vn—l) € R*

i.e. (vo,...,vn_l) € O(n,R) whence (vo,...,vp) € &(n,R).
Now, let o : R/J = R be a section of k. It gives a

section g : (R/J)® > R™ of ¢ : R" » (R/I)". Define
¢ : O(n,R/5)< J" > = 0(n,R)

for (VD,...,vp) € 0(n,R/J), Sps+--»S e gt by

p

wﬂvo,sox...,(vp,sp)) = (0v0+so,...,ovp+sp)

As K(ovi+si) = V., we find that w((vo,so),...,(vp,sp)) € 0(n,R).
It is left to the reader to verify that y is an isomorphism
of posets.

(ii) This is analogous to (1).
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Combining II(6.3), (4.5), (5.9) and (6.1) yields our main

acyclicity theorem.

(6.2) Theorem. Let R be a ring, J an ideal contained in its
Jacobson radical.

(i) If R/J is Euclidean, then O(n,R) is n-1-dim CM for all n.

(ii) If R is local or R/J is a subring of Q, then.ﬂ(n,k,R) is
n-k-dim CM for 0 < k < n.

Remark. IE[X] is Euclidean, but Jki,O,fb[X]) is not connected

and hence not CM, as one easily sees.
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IV Posets and group homology.

-

1. Group actions on posets.

To compare the homology of a group G with the homology
of a certain subgroup GO, we construct a topologizal space X
such that H;G = HiX and H,X = HiGD for i within a certain
range. In the first two sections of this chapter we describe
a general setting to solve this kind of problem. In section 3
and 4% we apply the theory to compare the homology of GLn(R)

and GLn 1(R) for certain rings R.

+

Let F C &(V) be full of dimension d. Suppose we have a
group G acting on V. Then we let G act on 9(V) by defining
for g € G and (vo,...,vp) € (V) that g(vD,...,vP) =
= (gvo,...,gvp). If moreover GF C F then we say G acts on F.
We say G acts transitively on F if we have for each pair of
elements of maximal height (VO,...,Vd), (wo,...,wd) € F a

g € G such that g(v ,vd) = (wO,...,wd). It follows that

02" "
if for any p we have two elements (vo,...,vp),(wo,...,wp) €F

.

then there is a g € G such that g(vo,...,vp) = (WO""’WQ

Examples. (Compare II §u).

1) Let F = ¢(n), G = Sn; in this case S, acts transitively

on &(n).

2) For any ring R, the group GLn(R) acts transitively on 0(n,R).
3) Let R be a ring and define GAn(R)z GLn(R) x R" the semi-
direct product of GLn(R) and R". We call GAn(R) the general

affine group. It acts transitively on 3%n,R), by (g,a)(v)=(gv+a).
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In the remainder of this section, G is a group acting
transitively on a full subposet F C O(V) of dimension d. A is
a commutative ring. We define a category ¥(F,G) as follows:

Obj ¥(F,G) = F

[ —’_’ -
and the set of morphisms between v,w € I 1s
- — - -

Mor*(F,G)(v,w) = {g € G|gv < w}
i.e. we have g : v - w if and only if gv < w. To prove X(F,G)
is an honest category, we have to show: if g : Vv o+ W,
g' : U - v, then gg' U - w. Well, we have gvgﬁ’and
g'ﬁ <V so gg'ﬁ’ < g?i' < W.

We can construct a functor

# = 7(F,G6) : ¥(F,G) - G

. g . -»> - N

by sending v — * on objects. ‘For g : v - w we define of course
n{g) = g. We want to show 7 is a cofibred functor and compute
the cobase-change g, for g € G.

We have n/* = {(3,g)|3 € F, g € G} and ¢ (») = F. The
inclusion i : F = 7 1(*) - g/* sends V » (V,e). The functor
k : n/* » ¢ Y(*) given by (3,g)l+ gV is seen to be left adjoint
to i. We compute for g € G the cobase change g, as

- > —>

v (v,g) v gv
and indeed (gh), = g ,h, for g,h € G.

Theorem I (3.3) then yields a spectral sequence
E? = Hp(G,Hq(F,A)) = H

Pq
If T is d-spherical with d > 1, then by the universal coefficient

P+q(¥(F,G),A)

theorem Hd(F,A) is free over A, HO(F,A) = A, and the spectral
sequence degenerates to a long exact Gysin sequence

oo Hy 4 (G,A) ~ H, _4(G,Hy (F,A)) = H; (&(F,6),A) - H; (G,A) —...
see Spanier [ 13} Chap.9,sec. 3, theorem 3.
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(1.1) Proposition. Let F € O(V) be full of dimension d, and

G act transitively on F. If F is d-spherical then we have for
all commutative rings A

Hi(m) : H; 6(F,6),A) ¥ H,(G,A) i<a

Hd(ﬂ) : Hd(k(F,G),A) **Hd(G,A)
Proof. If d = 0 this is obvious. If 4 > 0, use the exact
Gysin sequence above. By I §3, we can identify the map

Hi(f(F,G),A) - Hi(G,A) in the Gysin sequence with Hi(n).

In the next section, we shall compute H,*(F,G),A) in
terms of the homology of certain subgroups of G. Though the
description seems fairly complicated, it yields in our
applications that Hi(GO,A) = Hi(*(F,G),A) for a certain

subgroup G4 of G and small 1i.

2. The fundamental spectral sequence.

In our description of the homology of ¥(F,G) an important
r6le will be played by the category Q(n), which we define
for n & 1 as follows:

0bj Q(n) = {{1,...,p}|p < n}
a morphism ¢ : {1,...,p} = {1,...,9} is a map such that
$(i) < ¢(j) for 1 < j. We want to give a simple way to
calculate H,(Q(n)%,L) for any system of coefficients on the
opposite category Q(n)°.

Define for 0 < i <k < n, the morphisms
k

g
1

by 65(1) = 1 if 1 <1, §8(1) = 141 if 1 > i. For a system of

{1,...,k} = {1,...,k+1}

red

coefficients £ on Q(n)’ we define the complex € (Q(n)°,L) by
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eredQun)®, L) = LC{1, . 5kD)

1
and
5 - ££{1,...,k+1}) > LC{1,...,k})
§, = T (-1)%2¢s%)
. i
i=0

Then by a brute force computation 6k 6k+1 = 0 and in fact we

have

(2.1) Proposition. For any system of coefficients L on Q(n)°

we have
H,(Q(n)®,£) = H,(er®dQn)e,L)).

Proof. It is easy to see that £ H-H,(Bfed(Q(n)°,£)) also
defines a homology theory on the abelian category of systems
of coefficients on Q(n)?. General homological algebra yields
that both homology theories are equal if
a) Hy(Q(n)®,£) = Hy(er®d(Qn)®,0)).
b) For any £ there is an acyclic covering P of £ such that

also Hi(Efed(Q(n)°,?) = 0 for i > 0.

To prove a) observe that
lim  £(X)
XG%(n)°
L{1}/[(£(aé) - £(ai))£({1,2})l
= Hoccfed(Q(n)°,£)>.

HO(Q(n)°,£)

For b) take 7 to be the acyclic covering of [ as
constructed in the proof of proposition I (3.2). To prove
Hi(Efed(Q(n)°,?)) = 0 for i > 0, we only have to show for
{1,...,k} € Q(n) and L an abelian group that for i > 0

H, (729(Q(n),P({1,- . . ,k},L ))) = 0
We have'A

egfg(qcn)°,?({1,...,k},L))= DL, sk)},L)C{1,. .53 )
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21 L
d:{1,...,33>1,...,k}
Ej_l(Ak“i,L)

Comparing bounderies of Efed

k-1

(Q(n)%P({1,...,k},L)) and
e, (A ,L) one sees they are equal, so we find
Hi(efedcqcn)",?({l,...,k},L))) = Hi(Ak"l,L)

k-1

and H; (A ,L) = 0 for i > 0.

Assume once more F is a full subposet of O(V) of dimension
d, and G is a group acting transitively on F. We define a
functor

p = p(F,6) : %(F,G) = Q(d+1)
On objects we have

p(F,G)(vi,...,vp) = {1,...,p}.
Let g : (vl,...,vp) -+ (wl,...,wq) be a morphism, then we have
g(vl,...,vp) < (wi,...,wq) so there is a unique map
6 : {1,...,p} = {1,...,q} such that ¢i < ¢j for i < j and
gv,; = W¢i for i = 1,...,p. We define

plg : (vyse.eesV ) = (wi""’wq)) = ¢.

P
It is obvious this indeed defines a functor.

(2.2) Proposition. Let G act transitively on the full F of

dimension d. Then p(F,G8) : %(F,G) = Q(d+1) is a fibred
functor.
Proof. First we determine {1,...,k}N\p. We have

{1,...,kNp = {((Wy5---5wy)s0) |0 ¢ {1,...,k} =~ {1,...,1}}
The inclusion functor ik : p M{1,...,k} = {1,...;kN\p is given
by ik(wl"“’wk) = ((wl,...,w ),id), with id the identity

morphism {1,...,k} = {1,...,k}.
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We have to exhibit a right adjoint r, to ik' This goes as
follows: define

r {1,...,kNp = p~{1,...,k}

k:

by
rk((wl,...,wl),¢) = (w¢1,...,w¢k)

Now, for ((wl,...,wl),¢) € {1,...,k\p the morphism

e : ((w

ee W, ),1d) ((wl,...,wl),¢) with e € G the

¢1°" ¢k
identity enjoys the following universal property: given a
morphism g : ((Vl""’vk)’id) -+ ((wl,...,wl),¢) there is a

unique factorisation

((Vl’ﬂf"vk)’id) —& ((wl,...,wl),¢)

> ((w ),id)

¢1,---,W¢k
yielding an isomorphism
Mor{l,...,k}\p(lk(vl""’Vk)’((wl""’wl)’¢)) =
& Morp‘l{l,...,k}((vl"'"Vk)’rk((wl"“’wl)’¢))
which clearly means r; is right adjoint to ik.
We have to compute the base-change: take
¢ : {1,...,k} » {1,...,1} to be a morphism in Q(d+1). Then

for (w .,wl) € p71{1,...,1}

1’!'
¢‘(w1,...,wl)

1

rk((wl,...,wl),¢)

(w¢1,...,w¢k)
and hence (¢y)* = y*¢*, whenever the product is defined.

Both the possibility of computing the homology of a local
system of coefficients on Q(d+1)° and the fact that p(F,G) is

a fibred functor suggests that we must consider the functor
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p(F,G)°% : ¥(F,8)° = Q(d+1)" of opposite categories. It is a
cofibred functor. We have p(F,G)%/{1,...,k} = ({1,...,kNp(F,6N°.
As the homology of a category and its opposite are the same

for a constant system with value say, L, we find by I(3.3)

(2.3) Theorem. Let F be full of dimension d. Let G act
transitively on F, then we have for any abelian group L a
spectral sequence
E;q(F,G)=HP(Q(d+1)°,{1,...,k}H Hq({1,...,k}\p(r,e),L»=¢
= Hp+q(X(F,G),L) .

As p(F,B)" is cofibred, the system of coefficients
{1,...,k} Hq({l,...,k}\p(F;G),L) coincides with the system
of coefficients {(1,...,k} H'Hq(p(F,G)—l{l,...,k},L). We finish
this section with a more manageable description of this.

Choose an element of maximal height (ei,...,ed+1) € F.
Define for 0 € i € d the group

s 1 <5 < 1i+1}

Gy = StabG(el,...,ei+1)={g € Glgeg=e

Since in p~'{1,...,k} each morphism is an isomorphism, the
inclusion

I P Bpog 7 p~ M 1,...,k}
of Gy _4 in p~*{1,...,k} as group of automorphisms of (el,...,ek)
is an equivalence of categories. It follows from (2.2) that
H*(Gk—l’L) = H, ({1,...,kN\p,L).

Let ¢ : {1,...,k} = {1,...,1} be a morphism in Q(d+1).
We want to describe

H, (%) @ H,({1,...,1N\p,L) - H ({1,...,kNp,L).

Choose an element g¢ € G such that
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8;1(81""’ek (e¢1,...,e¢k

For g € Gl—l’ s = 1,...,k we have [IntG(g¢)(g)]eS = e_, SO

) = )

S

IntG(g¢) defines a homomorphism G, 4 =~ 6 Hence we have

k=1°
a homomorphism

H*(IntG(g¢)) : HL(G L) = H,(G L)

1-1° k=12

which we claim to be H,(¢*) under our identifications.
Consider the diagram of functors

StabG(e¢1,...,e¢k)—w1+ o= {1,...,k}

/7

// y
IntG(g¢) - I

Cp-1
- w - » [ —-1
where j is the inclusion of Stab G(e¢1,...,e¢k) in p~Y{1,...,k}
as group of automorphisms of (e¢1,...,e¢k). The diagram above

does not commute, but g ) > (e, ,,...5e.) 15 A
¢ 1 k

(e¢1,...,e¢k
morphism between the functors j and jk 0 IntG(g¢) as is easily
checked. By I(2.1)(ii) the maps [3j] and |3, ° IntG(g¢)! are

homotopic, SO

H*(jk ¢ IntG(g¢)) = H,(3)
The following diagram does commute _
11 - 1
Gl — p” {1,...,1}—— {1,...,1N\p
l
inc ¢*
St;bG(e¢1""’e¢k) 1+p—1{1,...,k}u}kﬂ-{1,..%,k}\p

in which 1inc : Gl—l - StabG(e¢1,...,e¢k) is the inclusion. It
follows
H,(¢*)H*(i1 0 jl) = H*(ik)H,(j)H*(inc)

So
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H.(¢*)H.(il 0 jl

which shows indeed that H.(IntG(g¢)) coincides with H, (¢*)

) = H*(ik 0 jk)H,(IntG(g¢))

under our identifications.
Now we can by (2.1) compute E;q(F,G) as the homology of

the complex Efq) with

EI(DQ) = H(6,L) p <d
Bl()m = 0 p>d
(q)

and boundaries 3 which are for p = 1,...,d given by

(q) _ P i
p = Z (-1) H (Int (gGP))

i=0
Moreover, the homomorphlsm H (GO,L) Hq(G ,L) given by

(m)
H (G,,L) = E2 (F,6) 298§ Edge H (X (F,6), Ly 22t H,(G,L)
q 0 Pq
is easily seen to be the map coming from the 1nclu31on G0 -+ G,

using I §3.

3. Stability.

In the coming sections, we apply the theory developed so
far to our main problem, the stability of H*(GLn(R),A) for a
commutative ring R with coefficients in a commutative ring A.
As an introduction to our method, we first derive the result
of Nakaoka on the stability of the homology of the symmetric

groups, see [7].

(3.1) Theorem. For n 2 2m, the map Hm(Sn,A) - Hm(8n+1,A) is
an isomorphism for any commutative ring A.

Proof. We use induction on m. For m = 0 there is nothing to

prove. Suppose we have proved the theorem for all m' <m,

with m 2 1.
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We take n > 2m and we apply the theory of sections 1 and

2 of this chapter with G = S F = g(n+1). We suppress the

n+1?

coefficients A in our notation.
By III (2.1), 6(n+1) is n-spherical, so because m < n we
have by (1.1)

H (¥(&(n+1),S ,,)) = H_(5_,,).

+1
It follows that we are through if we show that

)).

n+1

H (S ) = H_(x(&(n+1),5 .,

Choose (el,...,e ) = (1,...,n+1). We have for

n+il

1 = 04...sn that Gi = Stab5n+1(1,...,i+1) = S Moreover,

n=-1i"

for a morphism ¢ : {1,...,k} - {1,...,1} in Q(n+1) we can take

g¢ € Sl' But then g¢ commutes with the elements of
Stabn(1,...,1) = 6,_,. We conclude that H,(¢*) = H*(IntG(g¢))
is always equal to H,(inc) with inc : G - G the

1-1 k-1
inclusion map. It follows in particular for all i and k with

0 < i<k that H,((6§)*) = H,(inc) : H,(G) - H(6 _,).

k-1
So the differentials of the complex'EEq) described at the end

of section 2 are given by

353 = 0 2i < n+1
aég) = H, (inc) 2i < n

By section 2, we find that the E?-term of the spectral sequence
of theorem (2.3) is described as follows

2 -
E§o(F»6) = H (S)

2 - .
EZi,q(F’G) = Ker(Hq(Sn_2i) - Hq(sn-2i+1)) 2 <2i<n
2 _ .
E2i—1,q(F’G) = Coker(Hq(Sndzi)'* Hq(sn-zi+1) 2 € 2i €n.
In case n is odd, we find because Gn = {e} that

2 -
EnO(F’G) = Z
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2 -
Enq(F)G) =0 q >0
Finally, for p > n
E2 = 0.
pq(F,G)

) = H (S )

Our induction hypothesis states that Hq(S q‘Sn-2i+1

n-21i

is an isomorphism as soon as q < m and 2q < n-2i, so for i > 0,

q <mand 2(i+q) < n we find

2 - 2 -
Ezi,q(F,G) - Ezi_l,q(P’G) - 0.
Using this, we shall now verify that E;q(F,G) = 0 for

p+q=m, p & 1, and for p+q = m+l, p = 2. We have q < m-1. If p
is even, say p = 2i, the result follows from 2(i+q) =

= pt2q < 2Zm < n, and if p is odd, say p = 2i-1 it follows from
2(i+q) = p+2q+1 < 2m < n. So the E?-diagram of the spectral

sequence looks like

2 * *
EOm
0.  o.
q? ‘\\ \\,
—
P

General spectral sequence theory, as exposed in Cartan-
Eilenberg [ 1] Chap XV §5 shows that
~ T2
Hm(Sn) = EOm(F,G)
= Eom(F,G)
= Hm(X(F,G))

which finishes our proof.

Let R be a commutative ring. We want to use the method
of (3.1) to consider the relation between Hm(GLn(R),A) and
Hm(GLn

+1(R),A) for a commutative ring A. So we take
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G = GL_,4(R), F = &(n+1,R). We know that G acts transitively
on F. Take (el,...,en+1) € I. Further notations are as explained
in sections 1 and 2. We have

G. = {g € GL

$ neq(R)8le

)}

ERERELY ) = (el,...,e

i+1 i+l

i.e.Gi consists of partitioned matrices of the form
{1 e
i+1 -,

o AL

!

]

So G is the semi-direct product GL (R) x (Rn—l)l+1 of

n-1i

GLn_i(R) and i+l copies of R""'. We denote this group by
i+1 _ 1

GA__;(R). Observe that GA_(R) = GA (R). We embed GL__;(R)

in GA;ii(R) by sending .

/1. 9,
1+1 i s O

Let ¢ : {1,...,k} = {1,...,1} be a morphism in Q(n+l). We

can take g4 € GLn 1(R) of the form

+
|
11 hy o ©
[T S
(R
e N
0 "1

with h¢ € GLl(R), so that g¢ permutes e;,...,e, and fixes

el+1""’en+1' In the proof of Nakaoka's theorem, we used that

Ho(p*) = H*(intG(g¢)) = H,(inc), but unfortunately IntG(g¢)

does not fix all elements of G, _, in the present situation.

However, does commute with the image of GL__;.4(R) in

¢
1

- 1 .. .
G4 * GA_ _1,4(R). So as soon as Hq(GAn_l+1(R),A) is isomorphic

R ) xy - . oy
to Hq(GL (R),A) we find Hq(¢ ) Hq(lnc), sO Hq(¢ ) is

n-1+1

independent of ¢. Hence we shall need that
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Hq(GAﬁ(R),A) = Hq(GLn(R),A) for several values of q and n. We
take this condition for granted in proposition (3.3). We shall
consider it in detail in section 4. For the sake of clarity,

we introduce

(3.2) Definition. Let R be a commutative ring, e # 0 an integer.

For homology with coefficients in a commutative ring A define
the statements (am) and (Bm) as follows:

(am) Hm(GLn(R),A) -+ Hm(GLn+1(R),A) is an isomorphism for.

n 2 2m+e and a surjection for n » 0, n Z 2m+e-1.

(Bm) Hm(GLn(R),A) *’Hm(GAﬁ(R),A) is an isomorphism for n = O,

n = 2m+e-1, and all k.

(3.3) Proposition. Let R be a commutative ring such that @(n,R)

is n-i1-spherical for all n. Let A be a commutative ring,
e,f 2 0 integers. Assume (am) holds for m < f, and (Bm) holds
for m < f. In the case e = 0, f = 1 assume moreover that
Hl(GLl(R),A) *-Hl(GLz(R),A) is surjective. Then (af) holds.
Proof. We suppress both R and A in our notation, and proceed
as in the proof of Nakaoka's theorem. For f = 0 we have nothing
to prove, so suppose f = 1.

We want to apply the theorem of sections 1 and 2 of this

chapter with G = GL F = @(n+1,R).

n+l1’?

By assumption, ©(n+1,R) is n-spherical, so for n 2 2f+e

Hf(*(F,G)) = Hf(GLn ).

+1

For n = 2f+e~1 we find, because f < n, that
Hf(X(F,G)) *’Hf(GLn+1).
So we have to show for n = 2f+e that

Hf(GLn) o Hf(*(F,G))
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and for n = 2f+e-1 that

-

Hf(GLn) '”Hf(*(F,G))

1

Let (e ) be the standard basis in rMY . We

130 2€04q

already found
1
G = GAP?
1% n-p
By assumption, we have for q < f, n-p > 2q+e-1 that
(q)
e = H (G =~ H (GL
P q( P) q( n“P)
and so for i,p and q with 0 <1i <p, q f, 29 < n-p-e+l1 we
have Hq((ﬁ?)*) = Hq(inc) : Hq(Gp) -~ Hq(Gp—l) by th? ?emarks
q

above. So we find for the differentials a(q)that ap = 0 if
(q)

p is odd, q < f, 2q < n-p-e+l and ap = Hq(inc) if p is even,

ps<n, qsf, 2g < n-p-e+il.
It follows that we have for q < f, 1 € 2i < n-2g-e

2 -
E2i,q(F’G) = Ker(Hq(GL ) = Hq(GL ))

n-21i+1
and for q < £, 1 € 2i-1 € n~-2q-e, 2i-1 # n

n-21i

E2 ).

2i-1,q
So we find for q < f, 1 < p <n-29-e and p # n if p is odd that

- Y
(F,G) = Coker(Hq(GLn_zi) - Hq(b“n—2i+1
EZ (F,6) = 0
pq "’
since (aq) holds for q < f. Moreover, for q < f, 2q < n-e+l1 we
have
2
Hq(GLn)-» qu(F,G)
and for q < f, 2q € n-e, even
~ 2
Hq(GLn) = qu(F,G).
Assume i1if e = 0, f = 1 that n # 1, and let n =2 2f+e-1.
Take p 2 1, p+q = f, then p < n-1 and p = f-q < n~e-2q so
E;q(F,G) = 0. Hence the E?-diagram of the spectral sequence

looks like

B2,



2
L3¢ (F,6)
0 .
‘\
qt N
~
"0
P
SO
2 "
Ege(F>6) > He (¥(F,G)) » He(GL )

We conclude for n & 2f+e-~1 that

H (GLn)'* Hf(GLn ).

f +1
Assume now n » 2f+e. Let p » 2, p+q = f+1. Then p < n-1
if p is odd, and p = f+l1-q < n-e-2q, so again E;q(F,G) = 0.

So in this case the E*-diagram looks like

Eje(F,6) * *
- o 0 .
qt DR
* \.\ A
00
—
P

We conclude that
o 2
Hf(GLn) = Eof(F,G)

= Eof(F,G)

Hf(l(F,G)).
So for n = 2f+e
Hf(GLn) - Hf(GLn+1)

which finishes our proof.

4. Stability continued.

To get stability for the homology of GLn(R) we must prove
that Hq(GAi(R),A) = HF(GLn(R),A) for n and q within a certain
1
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range. We shall show that this holds in case both 0(n,R) and

L¢(n,k,R) are CM-posets. We begin this section by introducing

k,1

certain groups GA (R), which occur as stabilizers when we try

to prove (Bm) (cf.(3.2),(3.3)).

Let R be a ring. Then GAﬁ(R) is a subgroup of GL (R)

so we can form GAE(R) & (Rn+k)l. It is a subgroup of

n+k

n+k(R) x (Rn+k)l = l (R), and we denote it by GA (R) We
always think of GA (R) as the subgroup of GL +k+l(R),
consisting of partitioned matrices of the form
| |
1. 0O |
k \,‘ * l *
& 1 1
n e \ * l * .
P SV — — ——
! 1@
l '6- | ‘0’ 1 \‘
! 9 M1,
1

We obviously have embeddings

LRy -+ eal* e
given by
g H'(%~+—%)
and
LR > eako i)
given by
g»(%—{—il’)
It follows
cAX* () = ﬁ’l(R) x RAHL
GAﬁ Ry & A (R) x RMK

Furthermore, the groups GAnJ(R) enjoy the following property

(4.1) Lemma. There are isomorphisms
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T};’l L(ry » eal ¥ (r)

such that the diagram below commutes

l(R)——-————-—-*-GA’;’“l(R)
K,1 l K,1+1
Th Tn

1.k 1+1,k

GA T (R) —— GA (R)

Proof. Let ¢ € GLn(R) be the n x n permutation matrix given

by cn(ei) = e Define the automorphism 1 of GLn(R) by

n-i+1°
Tn(g) = Int(cn)(tg“‘) for g € GLn(R), where t denotes taking

k,1

transpose. Let T_ be the restriction of T to GA (R)

n+k+1l
We leave the remainder of the proof as an exercise.

ky,1+1

To describe the homology of GA (R),Wwe make it act on

the posetA(n+k,k,R). To do this, we project first GAk l+1(R)

onto GAﬁ’i(R) by suppressing 1 copies of R" *K . Now GA 1(R)

is a subgroup of GAn k(R) = GAn+k(R)‘ The latter acts on

+
‘#(n+k,R), and.ﬂ(n+k,k,R) is a subposet of.ﬂ{n+k,R). So we have

to prove for g € GAﬁ’l(R) that gﬂ(n+k,k,R) Cc ﬂkn+k,k,R). Write

g = (gg»,a) with g, € GAﬁ(R), a € RMK

. Take (vo,...,vp) €

E.J(n+k,k,R), then (vl—vo,...,vp—vo) € 0(n+k,k,R). Moreover
g(vo,...,vp) = (g0v0+a,...,g0vp+a)

which 1is in,#(n+k,k,R) i.f we show that

(go(vp-vo),...,go(vp-vo)) € @(n+k,k,R). But this is obviously

true as go(ej) = ej for 3 = 1,...,k.

{4.2) Lemma. GAﬁ’l+1(R) acts transitively onzj(n+k,k,R) for
all 1 = 0.

Proof. We may take 1 = 0. Let e, = 0, then

0

ek+n) € 4(n+k,k,R). Let (v .,vn) € #Hn+k,k,R)

0°""

be arbltraryj Define g € GLn+k(R) by gey - e5>

(eoaek+1s~--s
52 1,...,k,
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ge. = Vj—k"vo’ j = k+1,...,k+n. Then obviously (g,vo)e GAi’l(R),

(g’VO)(EO’ek+1""’ek+n) z (vo,...,vn)

We introduce now a statement (ym) which will trivially
imply (Bm)' Let R,A,e be as in (3.2) and define:
(v,) H_(GL_(R),A) »H_(GAS>1(R),A) is an isomorphism for n > 0,
n » 2m+e-1 and all k,l.

The next result is the last preparation for our main stability

theorem.

(4.3) Proposition. Let R be a commutative ring, such that

A(n+k,k,R) is n-spherical for all n and k. Let A be a
commutative ring, e,f > 0 integers. Assume (e ) and (y ) hold
form < f. In case e = 0, f = 1, assume moreover that
Hl(GLl(R),A) - Hi(GAﬁ’l(R),A) is an isomorphism for all k and 1.
Then (Yf) holds.
Proof. We suppress R and A again in our notation. Since for
f = 0 we have nothing to prove, assume f > 1. We proceed as in
the proof of (3.1) and (3.3), considering the action of
G = GA};’l+1 with 1 > 0 on F =-4(n+k,k,R). Further notations
are as in sections 1 and 2. |

Since 2f < n+l1 we certainly have f < n, SO because

A(n+k,k,R) is n-spherical we find by (1.1)

ky,1+1
Hf(X(F,G)) ﬂ*Hf(GAn )
Fix the element (EO’ek+1""’ek+n) e A (n+k,k,R) with

ey = ¢. Then

1
—_ ?
G, = StabG(eo)

0 GA

1]

n+k)l_

GA_ x (R

o i e
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The elementsof(Rn+k)l act trivially on Akn+k,k,R) so for

i 1 we find

- n+k,1l
_ k+1i n+ky1
= GAn-i x (R )
_ k+i,1
= GALY’
. . _ k+i,1
The group GLn__i is embedded in Gi = GAn-i as group of auto-

morphisms of < C1pi+1’ " " * *Ck4n >.

Let ¢ be a morphism {1,...,8} = {1,...,t} in Q(nt+l). We

k,1

can take g, € GAn’ such that g¢ fixes e; for

¢

i = 1,...,k,k+t,...,k+n and permutes €05€)k412 * *2Ckataq’ Hence

g4 commutes with the elements of GL _, .. It follows that
oy e k+t=1,1
H (¢*) is independent of ¢ as soon as H (GA _(,1°7) = H (GL 147>

which happens by assumption if m < f, 2m < n-t-e+2.
We conclude for q < f, p <n, 29 < n-p-e+l that

\e;q? = H (GL,_ ).

n-p
(q)

Moreover, we find for the differentials ap that a(q) = 0 if

p
p is odd, q < f, 2q < n-p-e+l, and aéq) = Hq(inc) if p is even,
p<n, q <f, 2q < n-p-e+l.

By assumption we know for m < f, 2m < n-~e that

Hm(GLn) > Hm(GLn+1)

and for m < f, 2m = n-e+l that

Hm(GLn) *’Hm(GL )

n+l
As in the proof of (3.3) we conclude for q < f, p < n-1 if p
is odd and 1 < p S n-2q-e that E;q(F,G) = 0.

Assume now n 2 2f+e-1 and if e = 0, f = 1 that n 2 2. Then
if p2 1, ptq = f we have p < n-1 and p < n-2gq-e, SO

E;q(F,G) = 0. Hence the E?-diagram again looks like
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Efs(F,G)

o4

We conclude

Hf(GA};’l) e Eaf(F:G) - Eogf(F,G)
and

EBf(F,G) - Hf(I(F,G)).

We find

k,1 k,1+1

) > H (GA
Ak 1

He (GA

-+ GA

(GA Ly = (GAk 1+1

splits, it follows

)
As the inclusion G ﬁ’1+1
)

Using (4.1) this gives

k+1,1

k,1, ~
Hf(GAn ) = H (GA ).

Inductively, one finds for n = 2f+e~1 that
k,1
(GA Ty = Hf(GLn)

that is, (Yf)-

We shall now derive our main stability theorem from (3.3)

and (4.3).

(4.4) Theorem. Let R be a commutative ring, such that 0(n,R)
is n-1-spherical for all n, and.:kn+k,k,R) is n-spherical for
all n and k. Let A be a commutative ring. Take e = 0 if
Hl(GLi(R),A) = H (GA (R) A)
Hl(GLl(R),A)'* Hi(GLz(R),A)
and e = 1 if not. Then

(i) for n 2 0, n 2 2m+e-1, all k,1
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~ k,1
Hm(GLn(R),A) = Hm(GAn (R),A)
(ii) for n 2 2m+te
Hm(GLn(R),A) 5 Hm(GLn+1(R),A)
(iii) for n 2 0, n = 2m+e-1

(R),A).

Hm(GLn(R),A)‘* Hm(GLn+1

Proof. Induction on m. For m = 0, we have nothing to prove, so
suppose we have proved the result for 0 < m < f. This is
equivalent to saying that (am) and (ym) hold for m < f. Then
(4.3) implies that (yf), that is, (i) holds for m = f£f. Since
(ym) implies (sm), we can apply (3.3) to conclude that (af)

holds, i.e. (ii) and (iii) hold for m = f.

5. Stability concluded.

In this section, we want to combine the results of chapters

III and IV. First we give conditions implying

- k,1
Hi(GLl(R),A)'* Hl(GLz(R),A) and HI(GLl(R),A) = Hl(GAi’ (R),A).

(5.1) Lemma. Let R be a commutative ring, J an ideal contained
in its Jacobson radical. Assume R/J is Euclidean. Let A be a
commutative ring. Then suppose either 1-R* generates the unit

ideal or 3 € A. Then for all k,l1
H,(GL,(R),A) = H, (AN’ 1(R),A)

1 1 ? B | 1 ?
Hl(Gbl(R),A)'* Hl(GLz(R),A).

Proof. Denote for t € R, 1 # j by Eij(t) the matrix

1
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Then Hi(GAﬁ’l(R),Z) is generated by the images of the Eij(t)
with 1 = k+1, j # k+2 or j = k+1, i < k, and Hl(GLl(R),Z). By

conjugating these Eij(t) by matrices
\

\‘ _e_
K+l |- - ---u

with u € R* we find that the image of E, () in cheAﬁ’lcR),A)
equals the image of Eij(vt) for all v € R*. So if 1-R*

generates the unit ideal, Eij(t) goes to zero in HI(GAi’l(R),A),
and in general, taking v = -1, we find that the image of Eij(t)

is 2-torsion. We conclude that Hl(GLl(R),Z) = Hl(GAi’l(R),Z) if

K,
1

generated by H1(GL1(R),Z) and 2-torsion elements in the

1-R* generates the unit ideal, and that Hl(GA 1(R),%) is
general case.

As R/J is Euclidean, we have SLZ(R) = EZ(R) and so

1

Hi(GAl(R),Z)-» Hl(GLz(R),%).
So if 1-R* generates the unit ideal, we find

Hl(GLl(R),Z)~* H1(GL2(R),%)
and in the general case HI(GLz(R),%) is generated by the image
of Hl(GLl(R),Z)'* Hl(GLz(R),%) and 2-torsion elements.

For all groups G we have

Hi(G,A) = HI(G,X) By A

k)

Since tensoring with an A such that 3} € A kills 2-torsion, we

are through.

From III (6.2) and (4.43), (5.1) of this chapter we find
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(5.2) Theorem. Let R be a commutative ring; J is an ideal
contained in its Jacobson radical. Let A be a commutative
ring. Assume R is local or R/J is a subring of Q. Let e = 0
if 1~-R* generates the unit ideal or 3 € A, and e = 1 if not.
Then for n # 0, n & 2m+e-1 and all k,l
k,1

Hm(GLn(R),A) = Hm(GAn’ (R),A)
for n # 2m+te

Hm(GLn(R),A) - Hm(GLn+1(R),A)
and for n 2 0, n = 2m+e-1

Hm(GLn(R),A)'* Hm(GLn 1(R),A).

+

The next result tells when 1-R* generates the unit ideal.

(5.3) Proposition (i). Let R be local. Then 1-R* generates

the unit ideal if and only if the residue class field is not Ié.
(ii) Let R be a ring, J an ideal contained in its Jacobson
radical. Assuem R/J is a subring of Q. Then 1-R* generates the
unit ideal if and only if 3 € R/J.

Proof. This is left as an exercise.

For a direct application of (3.3) we have to prove the
condition (Bm) on the homology of GAﬁ(R). Scrutinizing the

proof of theorem 1' of Quillen [ 10) yields

(5.4) Theorem. Let R be a commutative ring, F a field. Assume

if char F = 0 there exists a prime number invertible in R and
if char F = p > 0 that p is invertible in R. Then for all n
and k

k
H.(GLn(R),F) = H,(GAn(R),F).
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Combining III (6.2) with (3.3) and (5.4) yields

(5.5) Theorem. Let R be a commutative ring, J an ideal

contained in its Jacobson radical such that R/J is Euclidean.

Let F be a field. Assume if char F = 0 there exists a prime
number invertible in R and if char F = p > 0 that p is invertible
in R. Then for n 2 2m

x
Hm(GLn(R),F) Hm(GLn 1(R),F)

+
and for n 2 0, n = 2m-1

H (6L (R),F) - H (6L _,,(R),F).
Proof. Since either 3 € F or 3 € R, which implies that 1-R*

generates the unit ideal, we can take e = 0 in (3.3) by (5.1).

Examples. 1) Let r be an integer, R a subring of Q. Let e = 0
if 3 €E R, e = 1 if not. Then for n 2 2m+e

H_(GL_(RIXI/(X")),Z) 5 H_(GL (RUX1/7(X5)),m)

n+l
and for n = Z2mte-1

r r
Hm(GLn(R[X]/(X )),Z) Hm(GLn 1(R[X]/(X N,

+
Observe that we have, by taking R = Z, r =0, m = 2

H,(GL, (Z),Z) 2 H,(GL (X, %) = H,(CL (Z),Z) ~ ...
which is a known result, cf. Milnor [6].
2) Let R be a @-algebra. By a universal coefficient theorem
argument, it follows from (5.4) that

He (GAS(R),Z) = H,(GL_(R),%).
If J is an ideal contained in the Jacobson radical of R such
that R/J is Euclidean, we conclude from III (6.2), (3.3) and
(5.1) becauée 2 € R that for n 2 2m

Hm(GLn(R),Z) - Hm(GLn 1(R),ZL)-

+

and for n =.2m-1
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Hm(GLn(R),Z)'* Hm(GLn
We can take for instance R

some natural number r.

+

1(R),Z)
= @ X1IY] or R

Q[X,Y]/(Yr) for
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Samenvatting.

Het hele gebeuren rond een promotie brengt met zich mee
dat de voor die gelegenheid geproduceerde wiskundige tekst
ook buiten de eng-wiskundige kring verspreiding vindt. Wellicht
dat U, geachte niet-wiskundige lezer, de vraag voelt opkomen
wat het thans voor U liggende geschrift eigenlijk behelst.
Gaarne wil ik U hier in deze samenvatting iets over vertellen.

Welnu, ik ben uitgegaan van een concreet probleem,
afkomstig uit wat in niet-vakkringen hogere wiskunde genoemd
wordt. Met mathematisch kunst- en vliegwerk heb ik dit
probleem omgezet in een technische vraag die met -wiskundig
gezien- eenvoudige middelen kon worden opgelost.

Deze laatste vraag betreft de vorm der dingen. Laat ik
het soort probleem toelichten aan de hand van een aardrijks-
kundig voorbeeld. Stel eens, dat U op een eiland zit. De

onderstaande eilanden zijn in zekere zin hetzelfde

fig. I. Gearceerd is water.

en de volgende ook

De eilanden van fig.II verschillen echter met die van fig.I
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door de aanwezigheid van een binnenmeer.
We vragen ons nu af hoe U als eilandbewoner de aanwezig-
heid van zo'n meer kunt bepalen, als U alleen maar over land

mag lopen. U zou dat als volgt kunnen doen, zie fig. III.

Sla een paal en bind daar een stuk touw aan vast. Maak,
het touw afwikkelend, een rondwandeling over het eiland. Als
U weer bij de paal bent aangekomen, trekt U het touw aan.
Kijk of dat kan zonder dat het touw nat wordt. Zo ja, dan
bent U niet om een meer heengewandeld, zo nee, dan bent U wel
om een meer heen gewandeld.

Deze vraag, geachte lezer, heb ik aangepakt in een al-
gemener en wiskundiger jasje. Laat ik tenslotte voor de
enigszins wiskundig onderlegden het probleem formuleren.

Beschouw GLn(Z), de groep van de inverteerbare n x n-
matrices met gehele coéfficienten. Stop GLn(Z) in GLn+1(Z)
door rechtsonder een 1 te schrijven en verder 0. We vragen
ons af: stabiliseert de homologie van GLn(Z) met gehele
coefficienten, d.w.z. is voor vaste m de afbeelding

Hm(GLn(Z),Z) *’Hm(GLn 1(Z),Z)

+
een isomorfisme voor n groot? Het antwoord op deze vraag
blijkt ja te zijn, als n > 2m.

We brengen in het proefschrift het probleem terug tot

de volgende vraag: is een expliciet gegeven topologische

ruimte X n-spherisch, d.w.z. 1s ﬁi(x,z) = 0 voor 1 ¥ n, en
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is ﬁn(X,Z) een vrij Z-moduul? Deze vraag kunnen we met wat
ik zou willen omschrijven als een "schaar-en-lijmpot methode"
bevestigend beantwoorden.

In ons aardrijkskundig voorbeeld hebben we de eigenschap:
"alle wegen in X zijn samentrekbaar in X" beschouwd. Wiskundig
gezegd: ni(Z) = 0. Hieruit volgt dan weer dat ﬁl(x,z) = 0.
Tenslotte zij opgemerkt dat er ni(X) met i > 1 bestaan, die
op een analoge wijze als F1(X) beschreven kunnen worden, en
die nauw samenhangen met ﬁi(X,Z).

Voor een preciesere beschrijving van de hier geschetste

methode wordt men verwezen naar de Engelse inleiding.
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