Background	Classification	g = 1	g = 2	g = 3, p = 2
0000	0000	00	000	000

Fully maximal and minimal supersingular abelian varieties

Valentijn Karemaker (University of Pennsylvania)

Joint with R. Pries

Arithmetic, Geometry, Cryptography, and Coding Theory, CIRM

June 19, 2017

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Background	Classification	g = 1	g = 2	g = 3, p = 2
• 0 0 0		00	000	000
Supersingular	abelian	varieties		

Let $q = p^r$, $K = \mathbb{F}_q$, $k = \overline{\mathbb{F}}_q$.

Let A be a g-dimensional abelian variety defined over K.

(We will always assume A to be principally polarised.)

Let π_A be the relative Frobenius endomorphism of A. The roots $\{\alpha_1, \overline{\alpha}_1, \dots, \alpha_g, \overline{\alpha}_g\}$ of its characteristic polynomial P(A/K, T) are the Weil numbers of A/K. These have absolute value \sqrt{q} . Let $\{z_i = \frac{\alpha_i}{\sqrt{q}}, \overline{z}_i\}_{1 \le i \le g}$ be the normalised Weil numbers of A/K.

Definition (supersingular)

An elliptic curve *E* is supersingular if $E[p](k) = \{0\}$. *A* is supersingular if $A \times k \sim E^g \times k$ where *E* is supersingular, or equivalently, if its normalised Weil numbers are roots of unity.

Maximal	nd minimal ab	alian variati	~ ~	
000	0000	00	000	000
Background	Classification	$\sigma = 1$	$\sigma = 2$	$\sigma = 3 n = 2$

Definition (maximal/minimal)

A/K is maximal (minimal) if all its normalised Weil numbers are -1 (1).

abella

If the Weil numbers of A/\mathbb{F}_q are $\{\alpha_i, \overline{\alpha}_i\}_{1 \leq i \leq g}$, then those of A/\mathbb{F}_{q^m} are $\{\alpha_i^m, \overline{\alpha}_i^m\}_{1 \leq i \leq g}$. Hence:

- If A/\mathbb{F}_q is maximal or minimal, then A is supersingular.
- If A/\mathbb{F}_q is supersingular, then A is minimal over some \mathbb{F}_{q^m} .

Question

When does a supersingular A/K become maximal before it becomes minimal?

Background	Classification	$egin{array}{c} g = 1 \ \circ \circ \end{array}$	g = 2	g = 3, p = 2
○○●○	0000		000	000
Period and	parity			

Definition (period)

The $(\mathbb{F}_{q^{-}})$ period of A/\mathbb{F}_{q} is the smallest $m \in \mathbb{N}_{>0}$ such that $A/\mathbb{F}_{q^{m}}$ is either maximal $(z_{i} = -1 \ \forall i)$ or minimal $(z_{i} = 1 \ \forall i)$; rm is even.

Definition (parity)

The (\mathbb{F}_{q}) parity of A/\mathbb{F}_{q} is +1 (-1) if A first becomes maximal (minimal).

Example. Consider $E/\mathbb{F}_2: y^2 + y = x^3$. $E(\mathbb{F}_2) = \{(0,1), (0,0), \mathcal{O}\}$ so $|E(\mathbb{F}_2)| = 3$ and $\operatorname{Tr}(\pi_E) = 0$. So $P(E/\mathbb{F}_2, T) = T^2 + 2 = (T - \sqrt{-2})(T + \sqrt{-2})$. The normalised Weil numbers of E/\mathbb{F}_2 are $\{i, -i\}$. Hence, the normalised Weil numbers of E/\mathbb{F}_4 are $\{-1, -1\}$. So E has \mathbb{F}_2 -period 2 and \mathbb{F}_2 -parity +1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

Background	Classification	g = 1	g = 2	g = 3, p = 2
	0000	00	000	000
Twists				

A K-twist of A/K is an abelian variety A'/K such that $A \simeq_k A'$. Twists are classified by $[\xi] \in H^1(G_K, \operatorname{Aut}_k(A))$. A and A' may have different Weil numbers!

Example. Consider E/\mathbb{F}_3 : $y^2 = x^3 - x$. Its NWN are $\{i, -i\}$. Let $\alpha \in \mathbb{F}_{3^3}$ such that $\alpha^3 - \alpha = 1$. Then $(x, y) \mapsto (x - \alpha, y)$ yields a twist E'/\mathbb{F}_3 : $y^2 + 1 = x^3 - x$. Its NWN are $\{\frac{\sqrt{3}+i}{2}, \frac{\sqrt{3}-i}{2}\}$.

In general:

Example. If A/K is maximal and A'/K minimal, then g = [-1].

・ロト ・ 語 ト ・ 語 ト ・ 語 ・ うへぐ

Background	Classification	g = 1	g = 2	g = 3, p = 2
0000	• • • • •	00	000	000
Fully maximal	. fully minimal.	mixed		

New question

When do A/K and/or its K-twists have parity +1?

To answer this question, we classify supersingular A/K using the following *types*:

Fully maximal, fully minimal, mixed

A/K is fully maximal if all its K-twists have parity +1. A/K is fully minimal if all its K-twists have parity -1. A/K is mixed if both parities occur.

The type of A/K depends on its normalised Weil numbers and its automorphism group.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Background	Classification ••••	$egin{array}{c} g = 1 \ \circ \circ \end{array}$	g = 2 000	g = 3, p = 2 000
From	Weil numbers to typ	bes		

Let $K = \mathbb{F}_q = \mathbb{F}_{p^r}$ and let A/K have NWN $\{z_1, \overline{z}_1, \dots, z_g, \overline{z}_g\}$. The type of A/K depends on $\underline{e}(A/K) = \{e_i = \operatorname{ord}_2(|z_i|)\}_{1 \le i \le g}$. (A/K has parity 1 if and only if $e_i = e \ge 2$ (r odd) or $e_i = e \ge 1$ (r even) $\forall i$.)

Let A'/K be a twist with NWN $\{w_1, \overline{w}_1, \dots, w_g, \overline{w}_g\}$. Let $K_T = \mathbb{F}_{q^T}$ be the smallest extension such that $A \simeq_{K_T} A'$. Then $w_i = \lambda_i z_i$, where λ_i is a (non-primitive) *T*-th root of unity.

Proposition

- If $\operatorname{ord}_2(T) < \min\{e_i\}_{1 \le i \le g}$, then $\underline{e}(A'/K) = \underline{e}(A/K)$.
- If A/K has parity 1 and A'/K has parity -1, then T is even.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Background	Classification	g = 1	g = 2	g = 3, p = 2
0000	0000	00	000	000
From types to	Weil numbers			

Recall
$$K = \mathbb{F}_q = \mathbb{F}_{p^r}$$
 and $e_i = \operatorname{ord}_2(|z_i|)$.

Proposition

- If A is fully maximal, then $e_i = e \ge 2$ for all *i*.
- If A is fully minimal, then the e_i are not all equal.
- If $e_i = e \in \{0, 1\}$ for all *i* and *r* is even, then *A* is mixed.

The converses hold if $|Aut_k(A)| = 2$. Hence:

Proposition

If $|Aut_k(A)| = 2$ and g and r are odd, then A is fully maximal.

The typical structure of $Aut_k(A)$ is unknown. We do have:

Proposition

If A is simple and r is even, then A is not fully minimal.

Background 0000	Classification	$egin{array}{c} g = 1 \ \circ \circ \end{array}$	g = 2 000	g = 3, p = 2 000
Open questi	ons			

- What is the expected distribution of the {z_i}_{1≤i≤g} on the complex unit circle, for fixed K = 𝔽_{p^r} and g?
- Is it true that typically Aut_k(A) ≃ Z/2Z? (We prove this for g = 2.)
- Which type occurs most often, for fixed K = F_p and g? Does this vary among components of the moduli space A_{g,ss}?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• What are the distributions of the types as $r \to \infty$ (and g fixed) or $g \to \infty$ (and r fixed)?

Supersingula	ellintic curves			
Background	Classification 0000	$egin{array}{c} g = 1 \ igodot \circ \end{array}$	g = 2 000	g = 3, p = 2 000

Let $K = \mathbb{F}_q = \mathbb{F}_{p^r}$ and let E/K be a supersingular elliptic curve. Then $P(E/K, T) = T^2 - \beta T + q$ for some $\beta \in \mathbb{Z}$ such that $p|\beta$. A supersingular E/K is in one of the following cases.

Case <i>n_E</i>	Conditions on <i>r</i> and <i>p</i>	β	$\mathrm{NWN}/\mathbb{F}_q$	Parity
1a	<i>r</i> even	$2\sqrt{q}$	$\{1, 1\}$	-1
1b	<i>r</i> even	$-2\sqrt{q}$	$\{-1,-1\}$	1
2a	r even, $p ot\equiv 1$ mod 3	\sqrt{q}	$\{-\zeta_3,-\overline{\zeta}_3\}$	1
2b	r even, $p ot\equiv 1$ mod 3	$-\sqrt{q}$	$\{\zeta_3,\overline{\zeta}_3\}$	-1
3	r even, $p \equiv 3 \pmod{4}$	0	${i, -i}$	1
	or <i>r</i> odd			
4a	r odd, p = 2	$\sqrt{2q}$	$\{\zeta_8, \overline{\zeta}_8\}$	1
4b	r odd, p = 2	$-\sqrt{2q}$	$\{\zeta_8^5, \overline{\zeta}_8^5\}$	1
4c	r odd, p = 3	$\sqrt{3q}$	$\{\zeta_{12}, \overline{\zeta}_{\underline{1}2}\}$	1
4d	r odd, p = 3	$-\sqrt{3q}$	$\{\zeta_{12}^{7}, \overline{\zeta}_{12}^{7}\}$	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Supersingular	elliptic curves			
Background	Classification 0000	$egin{array}{c} g = 1 \ \circ ullet \end{array}$	g = 2 000	g = 3, p = 2 000

A supersingular elliptic curve in char. p is defined over \mathbb{F}_p or \mathbb{F}_{p^2} .

Theorem Let E/K be a supersingular elliptic curve. If E is defined over \mathbb{F}_p , then it is fully maximal. Otherwise, it is mixed.

The theorem follows from the following results:

- If p = 2, the unique supersingular curve E : y² + y = x³ is fully maximal.
- Let p ≥ 3. If Aut_k(E) ≄ Z/2Z, then E is geometrically isomorphic to either E : y² = x³ x or E : y² = x³ + 1. Both are fully maximal.
- Suppose that p ≥ 3 and Aut_k(E) ≃ Z/2Z. If E is defined over F_p, then it is fully maximal. Otherwise, it is mixed.

Background	Classification	g = 1	g = 2	g = 3, p = 2
0000	0000	00	●○○	000
Supersingular	abelian surfac	es		

Let A/K be a supersingular (unpolarised) abelian surface. Then $P(A/K, T) = T^4 + a_1T^3 + a_2T^2 + qa_1T + q^2 \in \mathbb{Z}[T]$. A is in one of the following cases.

	(a ₁ , a ₂)	Conditions on r and p	NWN/\mathbb{F}_q	Parity
1a	(0,0)	$r \text{ odd}, p \equiv 3 \mod 4 \text{ or } r \text{ even}, p \not\equiv 1 \mod 4$	$\{\zeta_8, \zeta_8^7, \zeta_8^3, \zeta_8^5\}$	1
1b	(0, 0)	$r \text{ odd}, p \equiv 1 \mod 4 \text{ or } r \text{ even}, p \equiv 5 \mod 8$	$\{\zeta_8, \zeta_8^7, \zeta_8^3, \zeta_8^5\}$	1
2a	(0, q)	$r \text{ odd}, p \not\equiv 1 \mod 3$	$\{\zeta_6, \zeta_6^5, \zeta_6^2, \zeta_6^4\}$	-1
2b	(0, q)	$r \text{ odd}, p \equiv 1 \mod 3$	$\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\}$	1
3a	(0, -q)	r odd and $p \neq 3$ or r even and $p \not\equiv 1 \mod 3$	$\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\}$	1
3b	(0, -q)	$r \text{ odd } \& p \equiv 1 \mod 3 \text{ or } r \text{ even } \& p \equiv 4, 7, 10 \mod 12$	$\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\}$	1
4a	(\sqrt{q}, q)	r even and $p \not\equiv 1 \mod 5$	$\{\zeta_5, \zeta_5^4, \zeta_5^2, \zeta_5^3\}$	-1
4b	$(-\sqrt{q}, q)$	r even and $p \not\equiv 1 \mod 5$	$\{\zeta_{10}, \zeta_{10}^9, \zeta_{10}^3, \zeta_{10}^7\}$	1
5a	$(\sqrt{5q}, 3q)$	r odd and p = 5	$\{\zeta_{10}^3, \zeta_{10}^7, \zeta_5^2, \zeta_5^3\}$	-1
5b	$\left(-\sqrt{5q}, 3q\right)$	r odd and p = 5	$\{\zeta_{10}, \zeta_{10}^9, \zeta_5, \zeta_5^4\}$	-1
ба	$(\sqrt{2q}, q)$	r odd and p = 2	$\{\zeta_{24}^{13}, \zeta_{24}^{11}, \zeta_{24}^{19}, \zeta_{24}^{5}\}$	1
6b	$\left(-\sqrt{2q},q\right)$	r odd and p = 2	$\{\zeta_{24}, \zeta_{24}^{23}, \zeta_{24}^{7}, \zeta_{24}^{17}\}$	1
7a	(0, -2q)	r odd	$\{1, 1, -1 - 1\}$	-1
7b	(0, 2q)	r even and $p \equiv 1 \mod 4$	$\{i, -i, i, -i\}$	1
8a	$(2\sqrt{q}, 3q)$	r even and $p \equiv 1 \mod 3$	$\{\zeta_3, \zeta_3^2, \zeta_3, \zeta_3^2\}$	-1
8b	$(-2\sqrt{q}, 3q)$	r even and $p \equiv 1 \mod 3$	$\{\zeta_6, \zeta_6^5, \zeta_6, \zeta_6^5\}$	1

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Background	Classification	$egin{array}{c} g = 1 \\ \circ \circ \end{array}$	g = 2	g = 3, p = 2
0000	0000		$\circ \bullet \circ$	000
Supersingular	abelian surfa	ices		

If we assume that $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2\mathbb{Z}$, the table implies:

- If r is odd, then A is not mixed. There are 6 fully maximal and 4 fully minimal cases.
- If r is even, then A is not fully minimal. There are 4 fully maximal and 4 mixed cases.

This assumption is not restrictive:

Proposition

If $p \geq 3$, the proportion of $\mathbb{F}_{p'}$ -points in $\mathcal{A}_{2,ss}$ which represent A with $\operatorname{Aut}_k(A) \not\simeq \mathbb{Z}/2\mathbb{Z}$ tends to zero as $r \to \infty$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Supersingular	abelian su	faces		
Background	Classification	$egin{array}{c} g = 1 \ \circ \circ \end{array}$	g = 2	g = 3, p = 2

Proposition

If $p \geq 3$, the proportion of $\mathbb{F}_{p'}$ -points in $\mathcal{A}_{2,ss}$ which represent A with $\operatorname{Aut}_k(A) \not\simeq \mathbb{Z}/2\mathbb{Z}$ tends to zero as $r \to \infty$.

The proof uses the following results:

- (Achter-Howe): $p^r \ll |\mathcal{A}_{2,ss}| \ll p^{r+2}$
- An \mathbb{F}_{p^r} -point A in $\mathcal{A}_{2,ss}$ is either $\operatorname{Jac}(X)$, or $E_1 \times E_2$, or $\operatorname{Res}_{\mathbb{F}_{p^{2r}}/\mathbb{F}_{p^r}}(E)$.
- (Achter-Howe): There are $\ll p^2$ of the latter two.
- So it suffices to bound the first case; $\operatorname{Aut}_k(\operatorname{Jac}(X)) \simeq \operatorname{Aut}_k(X)$ by Torelli.
- (Cardona, Cardona-Nart, Igusa, Ibukiyama-Katsura-Oort, Katsura-Oort, Koblitz): There are $\ll p^3$ supersingular curves X with $\operatorname{Aut}_k(X) \not\simeq \mathbb{Z}/2\mathbb{Z}$.

Background
0000Classification
0000g = 1
000g = 2
000g = 3, p = 2
000Supersingular curves of genus 3 in characteristic 2

Supersingular curves of genus 3 in char. 2 are parametrised by

$$X_{a,b}: x + y + a(x^3y + xy^3) + bx^2y^2 = 0.$$

Let $K = \mathbb{F}_q = \mathbb{F}_{2^r}$ be the smallest field containing a, b. Let $h \in \mathbb{F}_{q^2}$ be such that $h^2 + h = \frac{a}{h}$ and $K' = \mathbb{F}_q(h)$.

Define
$$c_1 = ab$$
, $c_2 = \frac{1}{(h+1)^2} \frac{1}{b}$, $c_3 = \frac{1}{h^2} \frac{1}{b}$. Let

$$\begin{split} E_1 : R^2 + R &= c_1 S^3, \\ E_2 : T^2 + T &= c_s (aS)^3, \\ E_3 : U^2 + U &= c_3 (aS)^3. \end{split}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Then $\operatorname{Jac}(X_{a,b}) \sim_{K'} E_1 \oplus E_2 \oplus E_3$.

We have $\operatorname{Jac}(X_{a,b}) \sim_{K'} E_1 \oplus E_2 \oplus E_3$, where E_i depends on c_i . Recall that $K = \mathbb{F}_{2^r}$ and $K' = K(h) = \mathbb{F}_{2^s}$ for $s \in \{r, 2r\}$.

Lemma

If c_i is a cube in K', then the NWN of E_i/K' are $\{i^s, (-i)^s\}$. If c_i is not a cube in K', then the NWN of E_i/K' are $\{\zeta_6^{s/2}, \zeta_6^{-s/2}\}$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

This determines the valuations of the NWN of $X_{a,b}$ over K.

Lemma

If $a \neq b$, then $\operatorname{Aut}_k(X_{a,b}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. If a = b, then $\operatorname{Aut}_k(X_{a,b}) \simeq (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}/9\mathbb{Z}$.

Knowing $\operatorname{Aut}_k(X_{a,b})$ allows us to compute the number of twists of $X_{a,b}$ and (the valuations of) their normalised Weil numbers. Comparing these to the normalised Weil numbers of $X_{a,b}$ we obtain the main result:

Theorem

If r is odd, $X_{a,b}$ is fully maximal if $h \in \mathbb{F}_q$ and mixed if $h \notin \mathbb{F}_q$. If $r \equiv 2 \mod 4$, $X_{a,b}$ is fully minimal if $h \notin \mathbb{F}_q$ and mixed if $h \in \mathbb{F}_q$. If $r \equiv 0 \mod 4$, then $X_{a,b}$ is fully minimal.

Thank you for your attention!

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●