Fully maximal and minimal supersingular abelian varieties

Valentijn Karemaker (University of Pennsylvania)

Joint with R. Pries
Arithmetic, Geometry, Cryptography, and Coding Theory, CIRM June 19, 2017

Supersingular abelian varieties

Let $q=p^{r}, K=\mathbb{F}_{q}, k=\overline{\mathbb{F}}_{q}$.
Let A be a g-dimensional abelian variety defined over K.
(We will always assume A to be principally polarised.)
Let π_{A} be the relative Frobenius endomorphism of A.
The roots $\left\{\alpha_{1}, \bar{\alpha}_{1}, \ldots, \alpha_{g}, \bar{\alpha}_{g}\right\}$ of its characteristic polynomial $P(A / K, T)$ are the Weil numbers of A / K.
These have absolute value \sqrt{q}.
Let $\left\{z_{i}=\frac{\alpha_{i}}{\sqrt{q}}, \bar{z}_{i}\right\}_{1 \leq i \leq g}$ be the normalised Weil numbers of A / K.

Definition (supersingular)

An elliptic curve E is supersingular if $E[p](k)=\{0\}$.
A is supersingular if $A \times k \sim E^{g} \times k$ where E is supersingular, or equivalently, if its normalised Weil numbers are roots of unity.

Maximal and minimal abelian varieties

Definition (maximal/minimal)
A / K is maximal (minimal) if all its normalised Weil numbers are -1 (1).

If the Weil numbers of A / \mathbb{F}_{q} are $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}_{1 \leq i \leq g}$, then those of $A / \mathbb{F}_{q^{m}}$ are $\left\{\alpha_{i}^{m}, \bar{\alpha}_{i}^{m}\right\}_{1 \leq i \leq g}$. Hence:

- If A / \mathbb{F}_{q} is maximal or minimal, then A is supersingular.
- If A / \mathbb{F}_{q} is supersingular, then A is minimal over some $\mathbb{F}_{q^{m}}$.

Question

When does a supersingular A / K become maximal before it becomes minimal?

Period and parity

Definition (period)

The $\left(\mathbb{F}_{q^{-}}\right)$period of A / \mathbb{F}_{q} is the smallest $m \in \mathbb{N}_{>0}$ such that $A / \mathbb{F}_{q^{m}}$ is either maximal $\left(z_{i}=-1 \forall i\right)$ or minimal $\left(z_{i}=1 \forall i\right) ; r m$ is even.

Definition (parity)

The $\left(\mathbb{F}_{q^{-}}\right)$parity of A / \mathbb{F}_{q} is $+1(-1)$ if A first becomes maximal (minimal).

Example. Consider $E / \mathbb{F}_{2}: y^{2}+y=x^{3}$.
$E\left(\mathbb{F}_{2}\right)=\{(0,1),(0,0), \mathcal{O}\}$ so $\left|E\left(\mathbb{F}_{2}\right)\right|=3$ and $\operatorname{Tr}\left(\pi_{E}\right)=0$.
So $P\left(E / \mathbb{F}_{2}, T\right)=T^{2}+2=(T-\sqrt{-2})(T+\sqrt{-2})$.
The normalised Weil numbers of E / \mathbb{F}_{2} are $\{i,-i\}$.
Hence, the normalised Weil numbers of E / \mathbb{F}_{4} are $\{-1,-1\}$.
So E has \mathbb{F}_{2}-period 2 and \mathbb{F}_{2}-parity +1 .

Twists

A K-twist of A / K is an abelian variety A^{\prime} / K such that $A \simeq{ }_{k} A^{\prime}$. Twists are classified by $[\xi] \in H^{1}\left(G_{K}, \operatorname{Aut}_{k}(A)\right)$.
A and A^{\prime} may have different Weil numbers!
Example. Consider $E / \mathbb{F}_{3}: y^{2}=x^{3}-x$. Its NWN are $\{i,-i\}$.
Let $\alpha \in \mathbb{F}_{3^{3}}$ such that $\alpha^{3}-\alpha=1$. Then $(x, y) \mapsto(x-\alpha, y)$ yields a twist $E^{\prime} / \mathbb{F}_{3}: y^{2}+1=x^{3}-x$. Its NWN are $\left\{\frac{\sqrt{3}+i}{2}, \frac{\sqrt{3}-i}{2}\right\}$.

In general:

satisfies

$$
\begin{aligned}
& \phi^{-1} \circ \pi_{A^{\prime}} \circ \phi=\pi_{A} \circ g^{-1} \\
& \text { for } g=\xi\left(F r_{K}\right) \in \operatorname{Aut}_{k}(A) \\
& \text { and }\left\langle F r_{K}\right\rangle \simeq G_{K}
\end{aligned}
$$

Example. If A / K is maximal and A^{\prime} / K minimal, then $g=[-1]$.

Fully maximal, fully minimal, mixed

New question

When do A / K and/or its K-twists have parity +1 ?
To answer this question, we classify supersingular A / K using the following types:

Fully maximal, fully minimal, mixed
A / K is fully maximal if all its K-twists have parity +1 .
A / K is fully minimal if all its K-twists have parity -1 .
A / K is mixed if both parities occur.
The type of A / K depends on its normalised Weil numbers and its automorphism group.

From Weil numbers to types

Let $K=\mathbb{F}_{q}=\mathbb{F}_{p^{r}}$ and let A / K have NWN $\left\{z_{1}, \bar{z}_{1}, \ldots, z_{g}, \bar{z}_{g}\right\}$. The type of A / K depends on $\underline{e}(A / K)=\left\{e_{i}=\operatorname{ord}_{2}\left(\left|z_{i}\right|\right)\right\}_{1 \leq i \leq g}$. (A / K has parity 1 if and only if $e_{i}=e \geq 2$ (r odd) or $e_{i}=e \geq 1$ (r even) $\forall i$.)

Let A^{\prime} / K be a twist with NWN $\left\{w_{1}, \bar{w}_{1}, \ldots, w_{g}, \bar{w}_{g}\right\}$.
Let $K_{T}=\mathbb{F}_{q^{T}}$ be the smallest extension such that $A \simeq{ }_{K_{T}} A^{\prime}$. Then $w_{i}=\lambda_{i} z_{i}$, where λ_{i} is a (non-primitive) T-th root of unity.

Proposition

- If $\operatorname{ord}_{2}(T)<\min \left\{e_{i}\right\}_{1 \leq i \leq g}$, then $\underline{e}\left(A^{\prime} / K\right)=\underline{e}(A / K)$.
- If A / K has parity 1 and A^{\prime} / K has parity -1 , then T is even.

From types to Weil numbers

$$
\text { Recall } K=\mathbb{F}_{q}=\mathbb{F}_{p^{r}} \text { and } e_{i}=\operatorname{ord}_{2}\left(\left|z_{i}\right|\right) .
$$

Proposition

- If A is fully maximal, then $e_{i}=e \geq 2$ for all i.
- If A is fully minimal, then the e_{i} are not all equal.
- If $e_{i}=e \in\{0,1\}$ for all i and r is even, then A is mixed.

The converses hold if $\left|\mathrm{Aut}_{k}(A)\right|=2$. Hence:

Proposition

If $\left|\mathrm{Aut}_{k}(A)\right|=2$ and g and r are odd, then A is fully maximal.
The typical structure of $\operatorname{Aut}_{k}(A)$ is unknown. We do have:

Proposition

If A is simple and r is even, then A is not fully minimal.

Open questions

(1) What is the expected distribution of the $\left\{z_{i}\right\}_{1 \leq i \leq g}$ on the complex unit circle, for fixed $K=\mathbb{F}_{p^{r}}$ and g ?
(2) Is it true that typically $\operatorname{Aut}_{k}(A) \simeq \mathbb{Z} / 2 \mathbb{Z}$?
(We prove this for $g=2$.)
(3) Which type occurs most often, for fixed $K=\mathbb{F}_{p^{r}}$ and g ? Does this vary among components of the moduli space $\mathcal{A}_{g, s s}$?
(9) What are the distributions of the types as $r \rightarrow \infty$ (and g fixed) or $g \rightarrow \infty$ (and r fixed)?

Supersingular elliptic curves

Let $K=\mathbb{F}_{q}=\mathbb{F}_{p^{r}}$ and let E / K be a supersingular elliptic curve. Then $P(E / K, T)=T^{2}-\beta T+q$ for some $\beta \in \mathbb{Z}$ such that $p \mid \beta$. A supersingular E / K is in one of the following cases.

Case n_{E}	Conditions on r and p	β	NWN $/ \mathbb{F}_{q}$	Parity
1a	r even	$2 \sqrt{q}$	$\{1,1\}$	-1
1b	r even	$-2 \sqrt{q}$	$\{-1,-1\}$	1
2a	r even, $p \not \equiv 1 \bmod 3$	\sqrt{q}	$\left\{-\zeta_{3},-\bar{\zeta}_{3}\right\}$	1
2b	r even, $p \not \equiv 1 \bmod 3$	$-\sqrt{q}$	$\left\{\zeta_{3}, \bar{\zeta}_{3}\right\}$	-1
3	r even, $p \equiv 3(\bmod 4)$	0	$\{i,-i\}$	1
	or r odd			
4a	r odd, $p=2$	$\sqrt{2 q}$	$\left\{\zeta_{8}, \bar{\zeta}_{8}\right\}$	1
4b	r odd, $p=2$	$-\sqrt{2 q}$	$\left\{\zeta_{8}^{5}, \bar{\zeta}_{8}^{5}\right\}$	1
4c	r odd, $p=3$	$\sqrt{3 q}$	$\left\{\zeta_{12}, \bar{\zeta}_{12}\right\}$	1
4d	r odd, $p=3$	$-\sqrt{3 q}$	$\left\{\zeta_{12}^{7}, \bar{\zeta}_{12}^{7}\right\}$	1

Supersingular elliptic curves

A supersingular elliptic curve in char. p is defined over \mathbb{F}_{p} or $\mathbb{F}_{p^{2}}$.

Theorem

Let E / K be a supersingular elliptic curve. If E is defined over \mathbb{F}_{p}, then it is fully maximal. Otherwise, it is mixed.

The theorem follows from the following results:

- If $p=2$, the unique supersingular curve $E: y^{2}+y=x^{3}$ is fully maximal.
- Let $p \geq 3$. If $\operatorname{Aut}_{k}(E) \nsucceq \mathbb{Z} / 2 \mathbb{Z}$, then E is geometrically isomorphic to either $E: y^{2}=x^{3}-x$ or $E: y^{2}=x^{3}+1$. Both are fully maximal.
- Suppose that $p \geq 3$ and $\operatorname{Aut}_{k}(E) \simeq \mathbb{Z} / 2 \mathbb{Z}$. If E is defined over \mathbb{F}_{p}, then it is fully maximal. Otherwise, it is mixed.

Supersingular abelian surfaces

Let A / K be a supersingular (unpolarised) abelian surface.
Then $P(A / K, T)=T^{4}+a_{1} T^{3}+a_{2} T^{2}+q a_{1} T+q^{2} \in \mathbb{Z}[T]$.
A is in one of the following cases.

	$\left(a_{1}, a_{2}\right)$	Conditions on r and p	NWN/ \mathbb{F}_{q}	Parity
1a	$(0,0)$	r odd, $p \equiv 3 \mathrm{mod} 4$ or r even, $p \not \equiv 1 \bmod 4$	$\left\{\zeta_{8}, \zeta_{8}^{7}, \zeta_{8}^{3}, \zeta_{8}^{5}\right\}$	1
1b	$(0,0)$	r odd, $p \equiv 1 \bmod 4$ or r even, $p \equiv 5 \bmod 8$	$\left\{\zeta_{8}, \zeta_{8}^{7}, \zeta_{8}^{3}, \zeta_{8}^{5}\right\}$	1
2a	$(0, q)$	r odd, $p \not \equiv 1 \bmod 3$	$\left\{\zeta_{6}, \zeta_{6}^{5}, \zeta_{6}^{2}, \zeta_{6}^{4}\right\}$	-1
2b	$(0, q)$	r odd, $p \equiv 1 \bmod 3$	$\left\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right\}$	1
3a	$(0,-q)$	r odd and $p \neq 3$ or r even and $p \not \equiv 1 \bmod 3$	$\left\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right\}$	1
3b	$(0,-q)$	r odd \& $p \equiv 1 \bmod 3$ or r even \& $p \equiv 4,7,10 \bmod 12$	$\left\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right\}$	1
4a	(\sqrt{q}, q)	r even and $p \not \equiv 1 \bmod 5$	$\left\{\zeta_{5}, \zeta_{5}^{4}, \zeta_{5}^{2}, \zeta_{5}^{3}\right\}$	-1
4b	$(-\sqrt{q}, q)$	r even and $p \not \equiv 1 \bmod 5$	$\left\{\zeta_{10}, \zeta_{10}^{9}, \zeta_{10}^{3}, \zeta_{10}^{7}\right\}$	1
5a	$(\sqrt{5 q}, 3 q)$	r odd and $p=5$	$\left\{\zeta_{10}^{3}, \zeta_{10}^{7}, \zeta_{5}^{2}, \zeta_{5}^{3}\right\}$	-1
5b	$(-\sqrt{5 q}, 3 q)$	r odd and $p=5$	$\left\{\zeta_{10}, \zeta_{10}^{9}, \zeta_{5}, \zeta_{5}^{4}\right\}$	-1
6a	$(\sqrt{2 q}, q)$	r odd and $p=2$	$\left\{\zeta_{24}^{13}, \zeta_{24}^{11}, \zeta_{24}^{19}, \zeta_{24}^{5}\right\}$	1
6b	$(-\sqrt{2 q}, q)$	r odd and $p=2$	$\left\{\zeta_{24}, \zeta_{24}^{23}, \zeta_{24}^{7}, \zeta_{24}^{17}\right\}$	1
7a	$(0,-2 q)$	r odd	$\{1,1,-1-1\}$	-1
7b	(0, 2q)	r even and $p \equiv 1 \bmod 4$	$\{i,-i, i,-i\}$	1
8a	$(2 \sqrt{q}, 3 q)$	r even and $p \equiv 1 \bmod 3$	$\left\{\zeta_{3}, \zeta_{3}^{2}, \zeta_{3}, \zeta_{3}^{2}\right\}$	-1
8b	$(-2 \sqrt{q}, 3 q)$	r even and $p \equiv 1 \bmod 3$	$\left\{\zeta_{6}, \zeta_{6}^{5}, \zeta_{6}, \zeta_{6}^{5}\right\}$	1

Supersingular abelian surfaces

If we assume that $\operatorname{Aut}_{k}(A) \simeq \mathbb{Z} / 2 \mathbb{Z}$, the table implies:

- If r is odd, then A is not mixed.

There are 6 fully maximal and 4 fully minimal cases.

- If r is even, then A is not fully minimal.

There are 4 fully maximal and 4 mixed cases.
This assumption is not restrictive:

Proposition

If $p \geq 3$, the proportion of $\mathbb{F}_{p^{r} \text {-points }}$ in $\mathcal{A}_{2, \text { ss }}$ which represent A with $\operatorname{Aut}_{k}(A) \nsucceq \mathbb{Z} / 2 \mathbb{Z}$ tends to zero as $r \rightarrow \infty$.

Supersingular abelian surfaces

Proposition

If $p \geq 3$, the proportion of $\mathbb{F}_{p^{r} \text {-points }}$ in $\mathcal{A}_{2, \text { ss }}$ which represent A with $\operatorname{Aut}_{k}(A) \nsucceq \mathbb{Z} / 2 \mathbb{Z}$ tends to zero as $r \rightarrow \infty$.

The proof uses the following results:

- (Achter-Howe): $p^{r} \ll\left|\mathcal{A}_{2, s s}\right| \ll p^{r+2}$
- An $\mathbb{F}_{p^{r} \text {-point }} A$ in $\mathcal{A}_{2, s s}$ is either $\operatorname{Jac}(X)$, or $E_{1} \times E_{2}$, or $\operatorname{Res}_{\mathbb{F}_{p^{2}} / \mathbb{F}_{p^{r}}}(E)$.
- (Achter-Howe): There are $\ll p^{2}$ of the latter two.
- So it suffices to bound the first case; $\operatorname{Aut}_{k}(\operatorname{Jac}(X)) \simeq \operatorname{Aut}_{k}(X)$ by Torelli.
- (Cardona, Cardona-Nart, Igusa, Ibukiyama-Katsura-Oort, Katsura-Oort, Koblitz): There are $\ll p^{3}$ supersingular curves X with $\operatorname{Aut}_{k}(X) \nsucceq \mathbb{Z} / 2 \mathbb{Z}$.

Supersingular curves of genus 3 in characteristic 2

Supersingular curves of genus 3 in char. 2 are parametrised by

$$
X_{a, b}: x+y+a\left(x^{3} y+x y^{3}\right)+b x^{2} y^{2}=0
$$

Let $K=\mathbb{F}_{q}=\mathbb{F}_{2^{r}}$ be the smallest field containing a, b.
Let $h \in \mathbb{F}_{q^{2}}$ be such that $h^{2}+h=\frac{a}{b}$ and $K^{\prime}=\mathbb{F}_{q}(h)$.
Define $c_{1}=a b, c_{2}=\frac{1}{(h+1)^{2}} \frac{1}{b}, c_{3}=\frac{1}{h^{2}} \frac{1}{b}$. Let

$$
\begin{aligned}
& E_{1}: R^{2}+R=c_{1} S^{3}, \\
& E_{2}: T^{2}+T=c_{s}(a S)^{3}, \\
& E_{3}: U^{2}+U=c_{3}(a S)^{3} .
\end{aligned}
$$

Then $\operatorname{Jac}\left(X_{a, b}\right) \sim K_{K^{\prime}} E_{1} \oplus E_{2} \oplus E_{3}$.

Supersingular curves of genus 3 in characteristic 2

We have $\operatorname{Jac}\left(X_{a, b}\right) \sim K^{\prime} E_{1} \oplus E_{2} \oplus E_{3}$, where E_{i} depends on c_{i}. Recall that $K=\mathbb{F}_{2^{r}}$ and $K^{\prime}=K(h)=\mathbb{F}_{2^{s}}$ for $s \in\{r, 2 r\}$.

Lemma

If c_{i} is a cube in K^{\prime}, then the NWN of E_{i} / K^{\prime} are $\left\{i^{s},(-i)^{s}\right\}$.
If c_{i} is not a cube in K^{\prime}, then the NWN of E_{i} / K^{\prime} are $\left\{\zeta_{6}^{s / 2}, \zeta_{6}^{-s / 2}\right\}$.
This determines the valuations of the NWN of $X_{a, b}$ over K.
Lemma
If $a \neq b$, then $\operatorname{Aut}_{k}\left(X_{a, b}\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
If $a=b$, then $\operatorname{Aut}_{k}\left(X_{a, b}\right) \simeq(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) \rtimes \mathbb{Z} / 9 \mathbb{Z}$.

Supersingular curves of genus 3 in characteristic 2

Knowing $\operatorname{Aut}_{k}\left(X_{a, b}\right)$ allows us to compute the number of twists of $X_{a, b}$ and (the valuations of) their normalised Weil numbers.
Comparing these to the normalised Weil numbers of $X_{a, b}$ we obtain the main result:

Theorem

If r is odd, $X_{a, b}$ is fully maximal if $h \in \mathbb{F}_{q}$ and mixed if $h \notin \mathbb{F}_{q}$. If $r \equiv 2 \bmod 4, X_{a, b}$ is fully minimal if $h \notin \mathbb{F}_{q}$ and mixed if $h \in \mathbb{F}_{q}$. If $r \equiv 0 \bmod 4$, then $X_{a, b}$ is fully minimal.

Thank you for your attention!

