Isomorphism classes of Drinfeld modules over finite fields

Valentijn Karemaker (Utrecht University)

Joint work in progress with Jeffrey Katen and Mihran Papikian

AMS-EMS-SMF Joint Mathematical Meeting Special session on Drinfeld Modules, Modular Varieties and Arithmetic Applications

19 July 2022

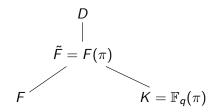
Set-up

We fix some notation:

•
$$A = \mathbb{F}_q[T], F = \mathbb{F}_q(T).$$

- $\mathfrak{p} \trianglelefteq A$ is a prime of degree d, monic generator denoted by \mathfrak{p} .
- $k \cong \mathbb{F}_{q^n}$ is a finite extension of $A/\mathfrak{p} = \mathbb{F}_\mathfrak{p} \cong \mathbb{F}_{q^d}$.
- $\gamma: A \to A/\mathfrak{p} \hookrightarrow k$ is the *A*-field structure on *k*.
- $\pi = \tau^n$ is the Frobenius endomorphism.

Let $\phi : A \to k\{\tau\}$ be a Drinfeld module over k of rank r, with $\mathcal{E} := \operatorname{End}_k(\phi)$ and $D := \mathcal{E} \otimes_A F = \operatorname{End}_k^0(\phi)$.



Guiding questions

The isomorphism class of D (or \tilde{F}), or equivalently the minimal polynomial of π over F, determines an **isogeny class** of Drinfeld modules over k.

We will consider the case where $D = \tilde{F}$ is commutative.

Important open problem

Describe, determine, and count the isomorphism classes within a fixed isogeny class.

- Brute force results for r = 2, 3. [Assong].
- Description of endomorphism rings due to Angles, Garai-Papikian, Kuhn-Pink, and others.
- Related to calculating zeta functions of Drinfeld modular varieties.

Isogenies, subgroups, lattices, ideals [Laumon]

Let $u : \phi \to \psi$ be an isogeny of Drinfeld modules of rank r over k. The kernel of $u \in k\{\tau\}$ is a finite group scheme G_u in A-modules.

Let $H_{\mathfrak{p}}$ denote the Dieudonné module and $T_{\mathfrak{l}}$ the Tate module. Via injective maps $u_{\mathfrak{p}}: H_{\mathfrak{p}}(\psi) \hookrightarrow H_{\mathfrak{p}}(\phi)$ and $u_{\mathfrak{l}}: T_{\mathfrak{l}}(\phi) \hookrightarrow T_{\mathfrak{l}}(\psi)$ for $\mathfrak{l} \neq \mathfrak{p}$, it yields sublattices $M_{\mathfrak{p}}:= u_{\mathfrak{p}}(H_{\mathfrak{p}}(\psi)) \subseteq H_{\mathfrak{p}}(\phi)$ and $M_{\mathfrak{l}}:= \operatorname{Hom}(u_{\mathfrak{l}}^{-1}T_{\mathfrak{l}}(\psi), A_{\mathfrak{l}}) \subseteq \operatorname{Hom}(T_{\mathfrak{l}}(\phi), A_{\mathfrak{l}}) =: H_{\mathfrak{l}}(\phi)$ for $\mathfrak{l} \neq \mathfrak{p}$, and hence a sublattice $M := \prod_{\mathfrak{l}} M_{\mathfrak{l}} \subseteq \prod_{\mathfrak{l}} H_{\mathfrak{l}}(\phi) =: \mathbb{H}(\phi)$. By construction, $G_u \simeq \prod_{\mathfrak{l} \neq \mathfrak{p}} H_{\mathfrak{l}}(\phi)/M_{\mathfrak{l}} \times H_{\mathfrak{p}}(\phi)/M_{\mathfrak{p}} = \mathbb{H}(\phi)/M$.

For an ideal $I \leq \mathcal{E}$, we have $k\{\tau\}I = k\{\tau\}u_I$ for some $u_I \in k\{\tau\}$. The sublattice corresponding to u_I is $I\mathbb{H}(\phi) = \prod_{\mathfrak{l}} IH_{\mathfrak{l}}(\phi)$, since $\ker(u_I) = \phi[I] = \bigcap_{\alpha \in I} \ker(\alpha)$.

Ideal action on isomorphism classes [Hayes]

Recall $\phi : A \to k\{\tau\}$ is a Drinfeld module with $\mathcal{E} := \operatorname{End}_k(\phi)$. For an ideal $I \trianglelefteq \mathcal{E}$, again write $k\{\tau\}I = k\{\tau\}u_I$ with $u_I \in k\{\tau\}$.

A Drinfeld module over k is determined by its value at T. Setting $\psi_T = u_I \phi_T u_I^{-1}$ determines a Drinfeld module ψ over k, isogenous to ϕ via $u_I : \phi \to \psi$. We write $\psi = I * \phi$.

Lemma

The map $I \mapsto I * \phi$ determines an action of the monoid of fractional ideals of \mathcal{E} up to linear equivalence on the set of isomorphism classes in the isogeny class of ϕ .

When is this action free? When is it transitive?

Kernel ideals

Let
$$I \trianglelefteq \mathcal{E} := \operatorname{End}_k(\phi) = D \cap k\{\tau\}$$
 be an ideal.

Definition

The ideal *I* is a **kernel ideal** if any of the following equivalent properties holds:

$$I = (k\{\tau\}I) \cap D.$$
 (Generally \subseteq .) [Yu]

2
$$I = \operatorname{Ann}_{\mathcal{E}}(\phi[I])$$
. (Generally \subseteq .)

• For any $J \trianglelefteq \mathcal{E}$, we have $J\mathbb{H}(\phi) \subseteq I\mathbb{H}(\phi) \Rightarrow J \subseteq I$. (\Leftarrow holds.)

Lemma

Upon restricting to kernel ideals, the ideal action $I \mapsto I * \phi$ is free.

Lemma

Every ideal is a kernel ideal when \mathcal{E} is maximal, or when \mathcal{E} is Gorenstein, e.g., when $\mathcal{E} = A[\pi]$.

Endomorphism rings (under the ideal action)

Fix a commutative endomorphism algebra D, i.e., an isogeny class. The endomorphism ring \mathcal{E} of a Drinfeld module ϕ in the isogeny class is an order in D containing the minimal order $A[\pi]$. For $I \leq \mathcal{E}$, let $(I : I) = \{g \in D : Ig \subseteq I\}$ be its order. Write $k\{\tau\}I = k\{\tau\}u_I$ as before.

Lemma, cf. [Yu] and [Waterhouse]

For any $I \trianglelefteq \mathcal{E}$, we have $\operatorname{End}_k(I * \phi) \supseteq u_I(I : I)u_I^{-1} \simeq (I : I)$. Equality holds when I is a kernel ideal.

Since $\mathcal{E} \subseteq (I : I)$, "endomorphism rings grow under ideal action". For transitivity of $I \mapsto I * \phi$, every occurring endomorphism ring in the isogeny class should be an overorder of \mathcal{E} . When does the minimal order $A[\pi]$ occur as endomorphism ring? Drinfeld modules over finite fields

Local maximality of $A[\pi]$

$$D = \tilde{F} = F(\pi)$$

$$K = \mathbb{F}_q(\pi) \quad \mathfrak{p} \quad (\pi)$$

Definition, cf. [Angles]

Let $B_{\tilde{p}}$ be the ring of integers of $\tilde{F}_{\tilde{p}} := \tilde{F} \otimes_{\mathcal{K}} \mathbb{F}_q((\pi))$ and write $A[\pi]_{\tilde{p}} := A[\pi] \otimes_{\mathbb{F}_q[\pi]} \mathbb{F}_q[[\pi]]$. Then $A[\pi]$ is **locally maximal** at π if $A[\pi]_{\tilde{p}} = B_{\tilde{p}}$.

Theorem

Recall deg(\mathfrak{p}) = d and $k \simeq \mathbb{F}_{q^n}$. Let H be the height of ϕ . Then $\left\lceil \frac{n}{H \cdot d} \right\rceil \leq \frac{[\tilde{F}:K]}{d}$, with equality $\Leftrightarrow A[\pi]$ is locally maximal at π . Hence, $A[\pi]$ is locally maximal at $\pi \Leftrightarrow \phi$ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.

$A[\pi]$ as an endomorphism ring

Fix a commutative endomorphism algebra D, i.e., an isogeny class.

Lemma

For any overorder R of $A[\pi]$, there exists a Drinfeld module ϕ in the isogeny class such that $\operatorname{End}_k(\phi)_{\mathfrak{l}} = R_{\mathfrak{l}}$ for all $\mathfrak{l} \neq \mathfrak{p}$.

At \mathfrak{p} , i.e., at π , any endomorphism ring is locally maximal. [Yu] By the Theorem, $A[\pi]$ is locally maximal at π if and only if ϕ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.

Corollary

 $A[\pi]$ occurs as an endomorphism ring if and only if it is locally maximal at π , if and only if the isogeny class is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$. So does any overorder of $A[\pi]$.

Main result

Theorem

Suppose that $\mathcal{E} := \operatorname{End}_k(\phi) = A[\pi]$. Then the action $I \mapsto I * \phi$ of the monoid of fractional ideals of $A[\pi]$ is free and transitive on the isomorphism classes in the isogeny class of ϕ . In other words, all isomorphism classes in the isogeny class of ϕ are of the form $I * \phi$ for some $A[\pi]$ -ideal I.

- If $\mathcal{E} = A[\pi]$ then ϕ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.
- For the Gorenstein order $A[\pi]$, every ideal is a kernel ideal.
- Kernel ideals act freely.
- Kernel ideals of A[π] act transitively on isomorphism classes whose endomorphism ring is an overorder of A[π], i.e., on all isomorphism classes.

Comparison with abelian varieties A over \mathbb{F}_q

Also in this case it is an interesting open problem to describe the isomorphism classes within a fixed isogeny class, determined by the isomorphism class of $E = \text{End}^{0}(A)$, or equivalently by the minimal polynomial of their Frobenius endomorphism π .

Deligne proved that the functor $A \mapsto H_1(\tilde{A} \otimes \mathbb{C})$ induces an equivalence of categories between **ordinary** abelian varieties over \mathbb{F}_q and certain $\mathbb{Z}[\pi, \bar{\pi}]$ -modules, via the canonical lifting \tilde{A} of A to characteristic zero. These \tilde{A} have a complex uniformisation.

Centeleghe-Stix proved that the functor $A \mapsto \operatorname{Hom}_{\mathbb{F}_p}(A, A_w)$ induces an equivalence of categories between abelian varieties **over** \mathbb{F}_p and certain $\mathbb{Z}[\pi, \overline{\pi}]$ -modules, where A_w has minimal endomorphism ring.