Mass formulae for supersingular abelian varieties

Valentijn Karemaker Utrecht University

Joint work with F. Yobuko and C.-F. Yu
Curves over finite fields: past, present and future
May 25, 2021

Moduli space \mathcal{A}_{g}

Let k be an algebraically closed field of characteristic p.

Definition

Let \mathcal{A}_{g} be the moduli space over k of principally polarised g-dimensional abelian varieties.
\mathcal{A}_{g} is irreducible of dimension $\frac{g(g+1)}{2}$.

Moduli space \mathcal{A}_{g}

Let k be an algebraically closed field of characteristic p.

Definition

Let \mathcal{A}_{g} be the moduli space over k of principally polarised g-dimensional abelian varieties.
\mathcal{A}_{g} is irreducible of dimension $\frac{g(g+1)}{2}$. Often write $X=(X, \lambda)$.
For $X \in \mathcal{A}_{g}(k)$, consider its p-divisble group $X\left[p^{\infty}\right]$. The isogeny class of $X\left[p^{\infty}\right]$ uniquely determines a Newton polygon. \Rightarrow Newton stratification of \mathcal{A}_{g}.

Moduli space \mathcal{A}_{g}

Let k be an algebraically closed field of characteristic p.

Definition

Let \mathcal{A}_{g} be the moduli space over k of principally polarised g-dimensional abelian varieties.
\mathcal{A}_{g} is irreducible of dimension $\frac{g(g+1)}{2}$. Often write $X=(X, \lambda)$.
For $X \in \mathcal{A}_{g}(k)$, consider its p-divisble group $X\left[p^{\infty}\right]$.
The isogeny class of $X\left[p^{\infty}\right]$ uniquely determines a Newton polygon.
\Rightarrow Newton stratification of \mathcal{A}_{g}.
The isogeny class of $X\left[p^{\infty}\right]$ also determines the p-RANK f of X :
$|X[p](k)|=p^{f}$, so $0 \leq f \leq g$.
$\Rightarrow p$-rank stratification of \mathcal{A}_{g}.

Moduli space \mathcal{S}_{g}

Definition

(1) $X \in \mathcal{A}_{g}(k)$ is SUPERSINGULAR if $X \sim E^{g}$ with $E[p](k)=0$.
(2) Let \mathcal{S}_{g} be the moduli space over k of principally polarised g-dimensional supersingular abelian varieties.

Moduli space \mathcal{S}_{g}

Definition

(1) $X \in \mathcal{A}_{g}(k)$ is SUPERSINGULAR if $X \sim E^{g}$ with $E[p](k)=0$.
(2) Let \mathcal{S}_{g} be the moduli space over k of principally polarised g-dimensional supersingular abelian varieties.

- All supersingular abelian varieties have the same Newton polygon, i.e., \mathcal{S}_{g} is a Newton stratum of \mathcal{A}_{g}.

Moduli space \mathcal{S}_{g}

Definition

(1) $X \in \mathcal{A}_{g}(k)$ is SUPERSINGULAR if $X \sim E^{g}$ with $E[p](k)=0$.
(2) Let \mathcal{S}_{g} be the moduli space over k of principally polarised g-dimensional supersingular abelian varieties.

- All supersingular abelian varieties have the same Newton polygon, i.e., \mathcal{S}_{g} is a Newton stratum of \mathcal{A}_{g}.
- A supersingular abelian variety has p-rank zero.

Moduli space \mathcal{S}_{g}

Definition

(1) $X \in \mathcal{A}_{g}(k)$ is SUPERSINGULAR if $X \sim E^{g}$ with $E[p](k)=0$.
(2) Let \mathcal{S}_{g} be the moduli space over k of principally polarised g-dimensional supersingular abelian varieties.

- All supersingular abelian varieties have the same Newton polygon, i.e., \mathcal{S}_{g} is a Newton stratum of \mathcal{A}_{g}.
- A supersingular abelian variety has p-rank zero.
- Every component of \mathcal{S}_{g} has dimension $\left\lfloor\frac{g^{2}}{4}\right\rfloor$.

The a-number stratification

Definition

Let $X \in \mathcal{A}_{g}(k)$. Its a-Number is $a(X):=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$. It depends on the isomorphism class of $X[p]$.

The a-number stratification

Definition

Let $X \in \mathcal{A}_{g}(k)$. Its a-Number is $a(X):=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$. It depends on the isomorphism class of $X[p]$.

For $X \in \mathcal{A}_{g}(k)$ with p-rank f, we have $0 \leq a(X) \leq g-f$.
For $X \in \mathcal{S}_{g}(k)$, we have $1 \leq a(X) \leq g$.
\Rightarrow a-number stratification of $\mathcal{S}_{g}=\coprod_{a=1}^{g} S_{g}(a)$.

The a-number stratification

Definition

Let $X \in \mathcal{A}_{g}(k)$. Its a-Number is $a(X):=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$. It depends on the isomorphism class of $X[p]$.

For $X \in \mathcal{A}_{g}(k)$ with p-rank f, we have $0 \leq a(X) \leq g-f$.
For $X \in \mathcal{S}_{g}(k)$, we have $1 \leq a(X) \leq g$.
\Rightarrow a-number stratification of $\mathcal{S}_{g}=\coprod_{a=1}^{g} S_{g}(a)$.

- Every component of $\mathcal{S}_{g}(a)$ has dimension $\left\lfloor\frac{g^{2}-a^{2}+1}{4}\right\rfloor$.
- $a(X)=g \Leftrightarrow X$ is Superspecial, i.e., $X \simeq E^{g}$.

The superspecial stratum $S_{g}(g)$ is zero-dimensional.

The Ekedahl-Oort stratification

For $X \in \mathcal{A}_{g}(k)$, consider its p-torsion $X[p]$.
Its isomorphism class is classified by an element of the Weyl group W_{g} of $\mathrm{Sp}_{2 g}$, or equivalently by an ELEMENTARY SEQUENCE φ.
\Rightarrow Ekedahl-Oort stratification of $\mathcal{A}_{g}=\coprod_{\varphi} \mathcal{S}_{\varphi}$.

The Ekedahl-Oort stratification

For $X \in \mathcal{A}_{g}(k)$, consider its p-torsion $X[p]$.
Its isomorphism class is classified by an element of the Weyl group W_{g} of $\mathrm{Sp}_{2 g}$, or equivalently by an ELEMENTARY SEQUENCE φ.
\Rightarrow Ekedahl-Oort stratification of $\mathcal{A}_{g}=\coprod_{\varphi} \mathcal{S}_{\varphi}$.

- Ekedahl-Oort stratification refines the p-rank stratification.
- Also consider Ekedahl-Oort stratification $\coprod_{\varphi}\left(\mathcal{S}_{\varphi} \cap \mathcal{S}_{g}\right)$ of \mathcal{S}_{g}. Combinatorial criterion determines when $\mathcal{S}_{\varphi} \subseteq \mathcal{S}_{g}$. These strata are reducible; all other strata are irreducible.

The Ekedahl-Oort stratification

For $X \in \mathcal{A}_{g}(k)$, consider its p-torsion $X[p]$.
Its isomorphism class is classified by an element of the Weyl group W_{g} of $\mathrm{Sp}_{2 g}$, or equivalently by an ELEMENTARY SEQUENCE φ.
\Rightarrow Ekedahl-Oort stratification of $\mathcal{A}_{g}=\coprod_{\varphi} \mathcal{S}_{\varphi}$.

- Ekedahl-Oort stratification refines the p-rank stratification.
- Also consider Ekedahl-Oort stratification $\coprod_{\varphi}\left(\mathcal{S}_{\varphi} \cap \mathcal{S}_{g}\right)$ of \mathcal{S}_{g}. Combinatorial criterion determines when $\mathcal{S}_{\varphi} \subseteq \mathcal{S}_{g}$. These strata are reducible; all other strata are irreducible.
- The a-number is constant on Ekedahl-Oort strata.

$$
\Rightarrow \mathcal{S}_{g}(a)=\coprod_{\varphi}\left(\mathcal{S}_{\varphi} \cap \mathcal{S}_{g}\right)
$$

A foliation of \mathcal{S}_{g}

Want to consider p-divisible groups up to isomorphism

A foliation of \mathcal{S}_{g}

Want to consider p-divisible groups up to isomorphism:

Definition

For $x=\left(X_{0}, \lambda_{0}\right) \in \mathcal{S}_{g}(k)$, define the Central LEAF

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\} .
$$

A foliation of \mathcal{S}_{g}

Want to consider p-divisible groups up to isomorphism:

Definition

For $x=\left(X_{0}, \lambda_{0}\right) \in \mathcal{S}_{g}(k)$, define the CEntral LEAF

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\} .
$$

- Each Λ_{x} is finite, but determining its size is very hard.

A foliation of \mathcal{S}_{g}

Want to consider p-divisible groups up to isomorphism:

Definition

For $x=\left(X_{0}, \lambda_{0}\right) \in \mathcal{S}_{g}(k)$, define the CEntral LEAF

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\}
$$

- Each Λ_{x} is finite, but determining its size is very hard.
- Let G_{x} / \mathbb{Z} be the automorphism group scheme, such that

$$
G_{x}(R)=\left\{h \in\left(\operatorname{End}\left(X_{0}\right) \otimes_{\mathbb{Z}} R\right)^{\times}: h^{\prime} h=1\right\}
$$

for any commutative ring R. Then there is a bijection

$$
\Lambda_{x} \simeq G_{x}(\mathbb{Q}) \backslash G_{x}\left(\mathbb{A}_{f}\right) / G_{x}(\widehat{\mathbb{Z}}) .
$$

A finer stratification?

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\} .
$$

Goal

For any $x \in \mathcal{S}_{g}$, compute the mASS

$$
\operatorname{Mass}\left(\Lambda_{x}\right)=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1}
$$

N.B. $\operatorname{Mass}\left(\Lambda_{x}\right)=\operatorname{vol}\left(G_{x}(\mathbb{Q}) \backslash G_{x}\left(\mathbb{A}_{f}\right)\right)=\operatorname{Mass}\left(G_{x}, G_{x}(\widehat{\mathbb{Z}})\right)$.

A finer stratification?

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\} .
$$

Goal

For any $x \in \mathcal{S}_{g}$, compute the MASS

$$
\operatorname{Mass}\left(\Lambda_{x}\right)=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1}
$$

N.B. $\operatorname{Mass}\left(\Lambda_{x}\right)=\operatorname{vol}\left(G_{x}(\mathbb{Q}) \backslash G_{x}\left(\mathbb{A}_{f}\right)\right)=\operatorname{Mass}\left(G_{x}, G_{x}(\widehat{\mathbb{Z}})\right)$.
\Rightarrow "Mass stratification" of \mathcal{S}_{g}.
Expected to refine the a-number and Ekedahl-Oort stratifications.

A finer stratification?

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{g}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\} .
$$

Goal

For any $x \in \mathcal{S}_{g}$, compute the MASS

$$
\operatorname{Mass}\left(\Lambda_{x}\right)=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1} .
$$

N.B. $\operatorname{Mass}\left(\Lambda_{x}\right)=\operatorname{vol}\left(G_{x}(\mathbb{Q}) \backslash G_{x}\left(\mathbb{A}_{f}\right)\right)=\operatorname{Mass}\left(G_{x}, G_{x}(\widehat{\mathbb{Z}})\right)$.
\Rightarrow "Mass stratification" of \mathcal{S}_{g}.
Expected to refine the a-number and Ekedahl-Oort stratifications.
From now on, we work with $g=3$!

How do we describe \mathcal{S}_{3} ?

Let $E / \mathbb{F}_{p^{2}}$ be a supersingular elliptic curve with $\pi_{E}=-p$.
Let μ be any principal polarisation of E^{3}.

Definition

A polarised flag type quotient (PFTQ) with respect то μ is a chain

$$
\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)
$$

such that $\operatorname{ker}\left(\rho_{1}\right) \simeq \alpha_{p}, \operatorname{ker}\left(\rho_{2}\right) \simeq \alpha_{p}^{2}$, and $\operatorname{ker}\left(\lambda_{i}\right) \subseteq \operatorname{ker}\left(V^{j} \circ F^{i-j}\right)$ for $0 \leq i \leq 2$ and $0 \leq j \leq\lfloor i / 2\rfloor$.

How do we describe \mathcal{S}_{3} ?

Let $E / \mathbb{F}_{p^{2}}$ be a supersingular elliptic curve with $\pi_{E}=-p$. Let μ be any principal polarisation of E^{3}.

Definition

A polarised flag type quotient (PFTQ) with respect то μ is a chain

$$
\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)
$$

such that $\operatorname{ker}\left(\rho_{1}\right) \simeq \alpha_{p}, \operatorname{ker}\left(\rho_{2}\right) \simeq \alpha_{p}^{2}$, and $\operatorname{ker}\left(\lambda_{i}\right) \subseteq \operatorname{ker}\left(V^{j} \circ F^{i-j}\right)$ for $0 \leq i \leq 2$ and $0 \leq j \leq\lfloor i / 2\rfloor$.

Let \mathcal{P}_{μ} be the moduli space of PFTQ's.
It is a two-dimensional geometrically irreducible scheme over $\mathbb{F}_{p^{2}}$.

How do we describe \mathcal{S}_{3} ?

An PFTQ w.r.t. μ is $\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)$.
It follows that $\left(Y_{0}, \lambda_{0}\right) \in \mathcal{S}_{3}$, so there is a projection map

$$
\begin{aligned}
\mathrm{pr}_{0}: \mathcal{P}_{\mu} & \rightarrow \mathcal{S}_{3} \\
\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right) & \mapsto\left(Y_{0}, \lambda_{0}\right)
\end{aligned}
$$

such that $\prod_{\mu} \mathcal{P}_{\mu} \rightarrow \mathcal{S}_{3}$ is surjective and generically finite.

How do we describe \mathcal{S}_{3} ?

An PFTQ w.r.t. μ is $\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)$.
It follows that $\left(Y_{0}, \lambda_{0}\right) \in \mathcal{S}_{3}$, so there is a projection map

$$
\begin{aligned}
\mathrm{pr}_{0}: \mathcal{P}_{\mu} & \rightarrow \mathcal{S}_{3} \\
\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right) & \mapsto\left(Y_{0}, \lambda_{0}\right)
\end{aligned}
$$

such that $\prod_{\mu} \mathcal{P}_{\mu} \rightarrow \mathcal{S}_{3}$ is surjective and generically finite.

Slogan

Each \mathcal{P}_{μ} approximates a geom. irreducible component of \mathcal{S}_{3}.

How do we describe \mathcal{P}_{μ} ?

Let $C: t_{1}^{p+1}+t_{2}^{p+1}+t_{3}^{p+1}=0$ be a Fermat curve in \mathbb{P}^{2}. It has genus $p(p-1) / 2$ and admits a left action by $U_{3}\left(\mathbb{F}_{p}\right)$.

Then $\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C$ is a \mathbb{P}^{1}-bundle. There is a section $s: C \rightarrow T \subseteq \mathcal{P}_{\mu}$.

How do we describe \mathcal{P}_{μ} ?

Let $C: t_{1}^{p+1}+t_{2}^{p+1}+t_{3}^{p+1}=0$ be a Fermat curve in \mathbb{P}^{2}. It has genus $p(p-1) / 2$ and admits a left action by $U_{3}\left(\mathbb{F}_{p}\right)$.

Then $\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C$ is a \mathbb{P}^{1}-bundle. There is a section $s: C \rightarrow T \subseteq \mathcal{P}_{\mu}$.

Upshot

For each (X, λ) there exist a μ and a $y \in \mathcal{P}_{\mu}$ such that $\operatorname{pr}_{0}(y)=[(X, \lambda)]$.
This y is uniquely characterised by a pair (t, u) with $t=\left(t_{1}: t_{2}: t_{3}\right) \in C(k)$ and $u=\left(u_{1}: u_{2}\right) \in \pi^{-1}(t) \simeq \mathbb{P}_{t}^{1}(k)$.

The structure of \mathcal{P}_{μ}

$$
\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C \text { has section } s: C \rightarrow T \subseteq \mathcal{P}_{\mu}
$$

Definition

Recall that X / k has a-number $a(X)=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$. For a PFTQ $y=\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right)$, we say $a(y)=a\left(Y_{0}\right)$.

The structure of \mathcal{P}_{μ}

$$
\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C \text { has section } s: C \rightarrow T \subseteq \mathcal{P}_{\mu}
$$

Definition

Recall that X / k has a-number $a(X)=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$.
For a PFTQ $y=\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right)$, we say $a(y)=a\left(Y_{0}\right)$.

- For a supersingular threefold X we have $a(X) \in\{1,2,3\}$, and $a(X)=3 \Leftrightarrow X$ is superspecial.

The structure of \mathcal{P}_{μ}

$$
\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C \text { has section } s: C \rightarrow T \subseteq \mathcal{P}_{\mu}
$$

Definition

Recall that X / k has a-number $a(X)=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$.
For a PFTQ $y=\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right)$, we say $a(y)=a\left(Y_{0}\right)$.

- For a supersingular threefold X we have $a(X) \in\{1,2,3\}$, and $a(X)=3 \Leftrightarrow X$ is superspecial.
- If $y \in T$, then $a(y)=3$.

The structure of \mathcal{P}_{μ}

$\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C$ has section $s: C \rightarrow T \subseteq \mathcal{P}_{\mu}$

Definition

Recall that X / k has a-number $a(X)=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$.
For a PFTQ $y=\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right)$, we say $a(y)=a\left(Y_{0}\right)$.

- For a supersingular threefold X we have $a(X) \in\{1,2,3\}$, and $a(X)=3 \Leftrightarrow X$ is superspecial.
- If $y \in T$, then $a(y)=3$.
- For $t \in C(k)$, we have $t \in C\left(\mathbb{F}_{p^{2}}\right) \Leftrightarrow a(y) \geq 2$ for any $y \in \pi^{-1}(t)$.

The structure of \mathcal{P}_{μ}

$\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C$ has section $s: C \rightarrow T \subseteq \mathcal{P}_{\mu}$

Definition

Recall that X / k has a-number $a(X)=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)$.
For a PFTQ $y=\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right)$, we say $a(y)=a\left(Y_{0}\right)$.

- For a supersingular threefold X we have $a(X) \in\{1,2,3\}$, and $a(X)=3 \Leftrightarrow X$ is superspecial.
- If $y \in T$, then $a(y)=3$.
- For $t \in C(k)$, we have $t \in C\left(\mathbb{F}_{p^{2}}\right) \Leftrightarrow a(y) \geq 2$ for any $y \in \pi^{-1}(t)$.
- For $y \in \mathcal{P}_{\mu}$, we have $a(y)=1 \Leftrightarrow y \notin T$ and $\pi(y) \notin C\left(\mathbb{F}_{p^{2}}\right)$.

The structure of \mathcal{P}_{μ} : a picture

$C\left(F_{p^{2}}\right)$

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a minimal isogeny

$$
\varphi: Y \rightarrow X
$$

from a superspecial abelian variety Y.

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a minimal isogeny

$$
\varphi: Y \rightarrow X
$$

from a superspecial abelian variety Y.

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

$$
Y_{2} \xrightarrow{\rho_{2}} Y_{1} \xrightarrow{\rho_{1}} Y_{0}=X .
$$

(If $Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}$ is a PFTQ, then Y_{2} is superspecial!)

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a minimal isogeny

$$
\varphi: Y \rightarrow X
$$

from a superspecial abelian variety Y.

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

$$
Y_{2} \xrightarrow{\rho_{2}} Y_{1} \xrightarrow{\rho_{1}} Y_{0}=X .
$$

(If $Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}$ is a PFTQ, then Y_{2} is superspecial!)

- If $a(X)=3$ then X is superspecial and $\varphi=\mathrm{id}$.
- If $a(X)=2$, then $a\left(Y_{1}\right)=3$ and $\varphi=\rho_{1}$ of degree p.
- If $a(X)=1$, then $\varphi=\rho_{1} \circ \rho_{2}$ of degree p^{3}.

What is a mass formula?

Goal

Compute $\operatorname{Mass}\left(\Lambda_{x}\right)=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1}$ for any $x \in \mathcal{S}_{3}$.
A mass formula computes an expression for the mass.

What is a mass formula?

Goal

Compute $\operatorname{Mass}\left(\Lambda_{x}\right)=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1}$ for any $x \in \mathcal{S}_{3}$.
A mass formula computes an expression for the mass.
Eichler-Deuring mass formula
Let $S=\left\{\right.$ supersingular elliptic curves over $\left.\overline{\mathbb{F}}_{p}\right\} / \simeq$. Then

$$
\operatorname{Mass}(S)=\sum_{s \in S} \frac{1}{|\operatorname{Aut}(s)|}=\frac{p-1}{24}
$$

From minimal isogenies to masses

Let $x=(X, \lambda)$ be supersingular and $\varphi: Y \rightarrow X$ a minimal isogeny. Write $\tilde{x}=\left(Y, \varphi^{*} \lambda\right)$. Recall automorphism group scheme G_{x}.

Through φ, we may view both $G_{\tilde{x}}(\widehat{\mathbb{Z}})$ and $\varphi^{*} G_{x}(\widehat{\mathbb{Z}})$ as open compact subgroups of $G_{\tilde{x}}\left(\mathbb{A}_{f}\right)$, which differ only at p.

From minimal isogenies to masses

Let $x=(X, \lambda)$ be supersingular and $\varphi: Y \rightarrow X$ a minimal isogeny. Write $\tilde{x}=\left(Y, \varphi^{*} \lambda\right)$. Recall automorphism group scheme G_{x}.

Through φ, we may view both $G_{\tilde{x}}(\widehat{\mathbb{Z}})$ and $\varphi^{*} G_{x}(\widehat{\mathbb{Z}})$ as open compact subgroups of $G_{\tilde{x}}\left(\mathbb{A}_{f}\right)$, which differ only at p. Hence:

Lemma

$$
\begin{aligned}
\operatorname{Mass}\left(\Lambda_{x}\right) & =\frac{\left[G_{\tilde{x}}(\widehat{\mathbb{Z}}): G_{\tilde{\chi}}(\widehat{\mathbb{Z}}) \cap \varphi^{*} G_{x}(\widehat{\mathbb{Z}})\right]}{\left[\varphi^{*} G_{x}(\widehat{\mathbb{Z}}): G_{\tilde{\chi}}(\widehat{\mathbb{Z}}) \cap \varphi^{*} G_{x}(\widehat{\mathbb{Z}})\right]} \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right) \\
& =\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right] \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right)
\end{aligned}
$$

From minimal isogenies to masses

Let $x=(X, \lambda)$ be supersingular and $\varphi: Y \rightarrow X$ a minimal isogeny. Write $\tilde{x}=\left(Y, \varphi^{*} \lambda\right)$. Recall automorphism group scheme G_{x}.

Through φ, we may view both $G_{\tilde{x}}(\widehat{\mathbb{Z}})$ and $\varphi^{*} G_{x}(\widehat{\mathbb{Z}})$ as open compact subgroups of $G_{\tilde{x}}\left(\mathbb{A}_{f}\right)$, which differ only at p. Hence:

Lemma

$$
\begin{aligned}
\operatorname{Mass}\left(\Lambda_{x}\right) & =\frac{\left[G_{\tilde{x}}(\widehat{\mathbb{Z}}): G_{\tilde{\chi}}(\widehat{\mathbb{Z}}) \cap \varphi^{*} G_{x}(\widehat{\mathbb{Z}})\right]}{\left[\varphi^{*} G_{x}(\widehat{\mathbb{Z}}): G_{\tilde{x}}(\widehat{\mathbb{Z}}) \cap \varphi^{*} G_{x}(\widehat{\mathbb{Z}})\right]} \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right) \\
& =\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right] \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right)
\end{aligned}
$$

So we can compare any supersingular mass to a superspecial mass.

From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!
Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]
Let $\tilde{x}=(Y, \lambda)$ be a superspecial abelian threefold.

- If λ is a principal polarisation, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{x}}\right)=\frac{(p-1)\left(p^{2}+1\right)\left(p^{3}-1\right)}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7}
$$

- If $\operatorname{ker}(\lambda) \simeq \alpha_{p} \times \alpha_{p}$, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{\chi}}\right)=\frac{(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} .
$$

From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!
Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]
Let $\tilde{x}=(Y, \lambda)$ be a superspecial abelian threefold.

- If λ is a principal polarisation, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{\chi}}\right)=\frac{(p-1)\left(p^{2}+1\right)\left(p^{3}-1\right)}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7}
$$

- If $\operatorname{ker}(\lambda) \simeq \alpha_{p} \times \alpha_{p}$, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{\chi}}\right)=\frac{(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)}{2^{10 \cdot 3^{4} \cdot 5 \cdot 7}} .
$$

It remains to compute $\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.

The case $a(X)=2$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=2$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.

The case $a(X)=2$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=2$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
There are reduction maps

$$
\begin{aligned}
\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right) & \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \\
\operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right) & \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times},
\end{aligned}
$$

where
$\operatorname{End}(u)=\left\{g \in M_{2}\left(\mathbb{F}_{p^{2}}\right): g \cdot u \subseteq k \cdot u\right\} \simeq\left\{\begin{array}{l}\mathbb{F}_{p^{4}} \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\ \mathbb{F}_{p^{2}} \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{array}\right.$

The case $a(X)=2$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=2$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right)$.
So $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=$

$$
\begin{aligned}
& {\left[\mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right): \operatorname{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times}\right]=} \\
& \begin{cases}p^{2}\left(p^{2}-1\right) & \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\
\left|\operatorname{PSL}_{2}\left(\mathbb{F}_{p^{2}}\right)\right| & \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}
\end{aligned}
$$

The case $a(X)=2$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=2$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right)$.
So $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=$

$$
\begin{aligned}
& {\left[\mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right): \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times}\right]=} \\
& \qquad \begin{cases}p^{2}\left(p^{2}-1\right) & \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\
\left|\mathrm{PSL}_{2}\left(\mathbb{F}_{p^{2}}\right)\right| & \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}
\end{aligned}
$$

Theorem (K.-Yobuko-Yu)

There are two mass strata in $\mathcal{S}_{3}(2)$:

$$
\begin{aligned}
\operatorname{Mass}\left(\Lambda_{x}\right) & =\frac{1}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} . \\
& \begin{cases}(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)\left(p^{4}-p^{2}\right) & : u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\
2^{-e(p)}(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right) p^{2}\left(p^{4}-1\right) & : u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}
\end{aligned}
$$

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
Let $D_{p}=\mathbb{Q}_{p^{2}}[\Pi]$ be the division quaternion algebra over \mathbb{Q}_{p}, and let $\mathcal{O}_{D_{p}}$ its maximal order. (We have $\Pi^{2}=-p$.)

- $G_{2}:=\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right) \simeq\left\{A \in \mathrm{GL}_{3}\left(\mathcal{O}_{D_{p}}\right): A^{*} A=\mathbb{I}_{3}\right\}$.
- $\left.G:=\operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=\left\{g \in G_{2}: g\left(X\left[p^{\infty}\right]\right)=X\left[p^{\infty}\right]\right\}$.

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
Let $D_{p}=\mathbb{Q}_{p^{2}}[\Pi]$ be the division quaternion algebra over \mathbb{Q}_{p}, and let $\mathcal{O}_{D_{p}}$ its maximal order. (We have $\Pi^{2}=-p$.)

- $G_{2}:=\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right) \simeq\left\{A \in \mathrm{GL}_{3}\left(\mathcal{O}_{D_{p}}\right): A^{*} A=\mathbb{I}_{3}\right\}$.
- $\left.G:=\operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=\left\{g \in G_{2}: g\left(X\left[p^{\infty}\right]\right)=X\left[p^{\infty}\right]\right\}$.

Reducing modulo p we obtain \bar{G}_{2} and \bar{G}, where:

- $\bar{G}_{2}=\left\{A+B \Pi \in \mathrm{GL}_{3}\left(\mathbb{F}_{p^{2}}[\Pi]\right): A^{*} A=\mathbb{I}_{3}, B^{\top} A^{*}=A^{* T} B\right\}$, so $\left|\bar{G}_{2}\right|=\left|U_{3}\left(\mathbb{F}_{p}\right)\right| \cdot\left|S_{3}\left(\mathbb{F}_{p^{2}}\right)\right|=p^{15}(p+1)\left(p^{2}-1\right)\left(p^{3}+1\right)$;
- $\bar{G}=\left\{g \in \bar{G}_{2}: g\left(\overline{X\left[p^{\infty}\right]}\right) \subseteq \overline{X\left[p^{\infty}\right]}\right\}$.

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
Let $D_{p}=\mathbb{Q}_{p^{2}}[\Pi]$ be the division quaternion algebra over \mathbb{Q}_{p}, and let $\mathcal{O}_{D_{p}}$ its maximal order. (We have $\Pi^{2}=-p$.)

- $G_{2}:=\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right) \simeq\left\{A \in \mathrm{GL}_{3}\left(\mathcal{O}_{D_{p}}\right): A^{*} A=\mathbb{I}_{3}\right\}$.
- $\left.G:=\operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=\left\{g \in G_{2}: g\left(X\left[p^{\infty}\right]\right)=X\left[p^{\infty}\right]\right\}$.

Reducing modulo p we obtain \bar{G}_{2} and \bar{G}, where:

- $\bar{G}_{2}=\left\{A+B \Pi \in \mathrm{GL}_{3}\left(\mathbb{F}_{p^{2}}[\Pi]\right): A^{*} A=\mathbb{I}_{3}, B^{\top} A^{*}=A^{* T} B\right\}$, so $\left|\bar{G}_{2}\right|=\left|U_{3}\left(\mathbb{F}_{p}\right)\right| \cdot\left|S_{3}\left(\mathbb{F}_{p^{2}}\right)\right|=p^{15}(p+1)\left(p^{2}-1\right)\left(p^{3}+1\right)$;
- $\bar{G}=\left\{g \in \bar{G}_{2}: g\left(\overline{X\left[p^{\infty}\right]}\right) \subseteq \overline{X\left[p^{\infty}\right]}\right\}$.

Moreover,

- $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=\left[G_{2}: G\right]=\left[\bar{G}_{2}: \bar{G}\right]$.

The case $a(X)=1$

```
Let }x=(X,\lambda)\in\mp@subsup{\mathcal{S}}{3}{}\mathrm{ such that }a(X)=1\mathrm{ .
Its PFTQ (Y2, \lambda2) ->(Y , , , ) ) ( X, \lambda) is characterised by a pair
t\in\mp@subsup{C}{}{0}(k):=C(k)\C(\mp@subsup{\mathbb{F}}{\mp@subsup{p}{}{2}}{})\mathrm{ and }u\in\mp@subsup{\mathbb{P}}{t}{1}(k)\mathrm{ .}
We need [Aut((Y2, \lambda2)[\mp@subsup{p}{}{\infty}]):\operatorname{Aut}((X,\lambda)[\mp@subsup{p}{}{\infty}])]=[G2:G]=[\mp@subsup{\overline{G}}{2}{}:\overline{G}].
```

- $\bar{G} \simeq\left\{\left(\begin{array}{cc}A & 0 \\ S A & A^{(p)}\end{array}\right): A \in U_{3}\left(\mathbb{F}_{p}\right), A \cdot t=\alpha \cdot t\right.$,

$$
\left.S \in S_{3}\left(\mathbb{F}_{p^{2}}\right), \psi_{t}(S)=u_{2} u_{1}^{-1}\left(1-\alpha^{p^{3}-1}\right)\right\}
$$

where $\psi_{t}: S_{3}\left(\mathbb{F}_{p^{2}}\right) \rightarrow k$ is a homomorphism depending on t.

The case $a(X)=1$

```
Let }x=(X,\lambda)\in\mp@subsup{\mathcal{S}}{3}{}\mathrm{ such that }a(X)=1
Its PFTQ (Y},\mp@subsup{\lambda}{2}{})->(Y,\lambda,\lambda)->(X,\lambda) is characterised by a pair
t\in\mp@subsup{C}{}{0}(k):=C(k)\C(\mp@subsup{\mathbb{F}}{\mp@subsup{p}{}{2}}{})\mathrm{ and }u\in\mp@subsup{\mathbb{P}}{t}{1}(k).
We need [Aut((Y2,\lambda2)[\mp@subsup{p}{}{\infty}]):\operatorname{Aut}((X,\lambda)[\mp@subsup{p}{}{\infty}])]=[\mp@subsup{G}{2}{}:G]=[\mp@subsup{\overline{G}}{2}{}:\overline{G}].
```

- $\bar{G} \simeq\left\{\left(\begin{array}{cc}A & 0 \\ S A & A^{(p)}\end{array}\right): A \in U_{3}\left(\mathbb{F}_{p}\right), A \cdot t=\alpha \cdot t\right.$,

$$
\left.S \in S_{3}\left(\mathbb{F}_{p^{2}}\right), \psi_{t}(S)=u_{2} u_{1}^{-1}\left(1-\alpha^{p^{3}-1}\right)\right\},
$$

where $\psi_{t}: S_{3}\left(\mathbb{F}_{p^{2}}\right) \rightarrow k$ is a homomorphism depending on t.
The images of ψ_{t} for varying t define a divisor $D \subseteq C^{0} \times \mathbb{P}^{1}$.
For $t \in C^{0}(k)$, let $d(t)=\operatorname{dim}_{\mathbb{F}_{p^{2}}}\left(\operatorname{Im}\left(\psi_{t}\right)\right)$ and $D_{t}=\pi^{-1}(t) \cap D$.
Then $u=\left(u_{1}: u_{2}\right) \in D_{t} \Leftrightarrow u_{2} u_{1}^{-1} \in \operatorname{Im}\left(\psi_{t}\right)$.

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
We need $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=\left[G_{2}: G\right]=\left[\bar{G}_{2}: \bar{G}\right]$.

- $\bar{G} \simeq\left\{\left(\begin{array}{cc}A & 0 \\ S A & A^{(p)}\end{array}\right): A \in U_{3}\left(\mathbb{F}_{p}\right), A \cdot t=\alpha \cdot t\right.$,

$$
\left.S \in S_{3}\left(\mathbb{F}_{p^{2}}\right), \psi_{t}(S)=u_{2} u_{1}^{-1}\left(1-\alpha^{p^{3}-1}\right)\right\}
$$

where $\psi_{t}: S_{3}\left(\mathbb{F}_{p^{2}}\right) \rightarrow k$ is a homomorphism depending on t.
The images of ψ_{t} for varying t define a divisor $D \subseteq C^{0} \times \mathbb{P}^{1}$.
For $t \in C^{0}(k)$, let $d(t)=\operatorname{dim}_{\mathbb{F}_{p^{2}}}\left(\operatorname{Im}\left(\psi_{t}\right)\right)$ and $D_{t}=\pi^{-1}(t) \cap D$.
Then $u=\left(u_{1}: u_{2}\right) \in D_{t} \Leftrightarrow u_{2} u_{1}^{-1} \in \operatorname{Im}\left(\psi_{t}\right)$.

$$
-|\bar{G}|= \begin{cases}2^{e(p)} p^{2(6-d(t))} & \text { if } u \notin D_{t} \\ (p+1) p^{2(6-d(t))} & \text { if } u \in D_{t} \text { and } t \notin C\left(\mathbb{F}_{p^{6}}\right) \\ \left(p^{3}+1\right) p^{6} & \text { if } u \in D_{t} \text { and } t \in C\left(\mathbb{F}_{p^{6}}\right)\end{cases}
$$

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair
$t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.

Theorem (K.-Yobuko-Yu)

There are three mass strata in $\mathcal{S}_{3}(1)$:
$\operatorname{Mass}\left(\Lambda_{x}\right)=\frac{p^{3}}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7}$.

$$
\begin{cases}2^{-e(p)} p^{2 d(t)}\left(p^{2}-1\right)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \notin D_{t} ; \\ p^{2 d(t)}(p-1)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \in D_{t}, t \notin C\left(\mathbb{F}_{p^{6}}\right) ; \\ p^{6}\left(p^{2}-1\right)\left(p^{3}-1\right)\left(p^{4}-1\right) & : u \in D_{t}, t \in C\left(\mathbb{F}_{p^{6}}\right) .\end{cases}
$$

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair
$t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.

Theorem (K.-Yobuko-Yu)

There are three mass strata in $\mathcal{S}_{3}(1)$:
$\operatorname{Mass}\left(\Lambda_{x}\right)=\frac{p^{3}}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7}$.

$$
\begin{cases}2^{-e(p)} p^{2 d(t)}\left(p^{2}-1\right)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \notin D_{t} ; \\ p^{2 d(t)}(p-1)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \in D_{t}, t \notin C\left(\mathbb{F}_{p^{6}}\right) ; \\ p^{6}\left(p^{2}-1\right)\left(p^{3}-1\right)\left(p^{4}-1\right) & : u \in D_{t}, t \in C\left(\mathbb{F}_{p^{6}}\right) .\end{cases}
$$

Question

What else can we use all these computations for?

Application: Oort's conjecture

Oort's conjecture
Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_{2} \simeq\{ \pm 1\}$.

Application: Oort's conjecture

Oort's conjecture

Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_{2} \simeq\{ \pm 1\}$.

This fails in general: counterexamples for $(g, p)=(2,2)$ and $(3,2)$.

Application: Oort's conjecture

Oort's conjecture

Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_{2} \simeq\{ \pm 1\}$.

This fails in general: counterexamples for $(g, p)=(2,2)$ and $(3,2)$.

Theorem (K.-Yobuko-Yu)

When $g=3$, Oort's conjecture holds precisely when $p \neq 2$.

Application: Oort's conjecture

Oort's conjecture

Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_{2} \simeq\{ \pm 1\}$.

This fails in general: counterexamples for $(g, p)=(2,2)$ and $(3,2)$.

Theorem (K.-Yobuko-Yu)

When $g=3$, Oort's conjecture holds precisely when $p \neq 2$.

- A generic threefold X has $a(X)=1$. Its PFTQ is characterised by $t \in C^{0}(k)$ and $u \notin D_{t}$.
- Our computations show for such (X, λ) that

$$
\operatorname{Aut}((X, \lambda)) \simeq \begin{cases}C_{2}^{3} & \text { for } p=2 \\ C_{2} & \text { for } p \neq 2\end{cases}
$$

