Galois theory, dynamics, and combinatorics of Belyi maps

Valentijn Karemaker (Utrecht University & Stockholm University)

Joint with I. Bouw and Ö. Ejder

Diamant symposium, De Bilt

November 29, 2019

Let X be a compact connected Riemann surface, or equivalently (GAGA), an algebraic curve over \mathbb{C} .

Definition (Belyi map)

A BELYI MAP is a finite cover $f : X \to \mathbb{P}^1_{\mathbb{C}}$, which is branched exactly over $\{0, 1, \infty\}$.

BELYI'S THEOREM says X is defined over $\overline{\mathbb{Q}}$ if and only if there exists a Belyi map as above.

Example. Let $X = \mathbb{P}^1_{\mathbb{C}}$ and $f(x) = -2x^3 + 3x^2$.

A DESSIN D'ENFANT for a Belyi map is a finite bipartite graph where white (resp. black) vertices are the inverse images of 0 (resp. 1) and edges are inverse images of (0, 1). There are deg(f) edges.

A dessin d'enfant is a combinatorial representation of a Belyi map.

Example. For $f(x) = -2x^3 + 3x^2$, the dessin is

Belyi maps

Generating systems and combinatorial types

A GENERATING SYSTEM of degree d > 1 is a triple $g = (g_1, g_2, g_3) \in S_d^3$ such that $g_1g_2g_3 = 1$ and such that $\langle g_1, g_2, g_3 \rangle$ acts transitively on $\{1, 2, \dots, d\}$. For a degree-d Belyi map f the g_i encode the ramification data (monodromy) above $\{0, 1, \infty\}$.

RIEMANN'S EXISTENCE THEOREM gives a bijection

 $\{ {\sf Generating \ systems} \}/ \sim \qquad \longleftrightarrow \qquad \{ {\sf Belyi \ maps} \}/ \simeq .$

Let $C(g_i)$ be the conjugacy class of g_i in S_d . The (COMBINATORIAL) TYPE of g is $(d; C(g_1), C(g_2), C(g_3))$. When $C(g_i)$ is a single cycle of length e_i , write $C(g_i) = e_i$.

Example. For $f(x) = -2x^3 + 3x^2$, the type is (3; 2, 2, 3).

Dynamical Belyi maps

A Belyi map is a finite cover $f : X \to \mathbb{P}^1_{\mathbb{C}}$ branched over $\{0, 1, \infty\}$.

Definition (Dynamical Belyi map)

A DYNAMICAL BELYI MAP is a Belyi map such that:

- $X = \mathbb{P}^1$ so $f : \mathbb{P}^1 \to \mathbb{P}^1$ ("genus zero");
- $C(g_i)$ is a single cycle of length e_i ("single cycle");
- f(0) = 0, f(1) = 1, $f(\infty) = \infty$ ("normalised").

The RIEMANN-HURWITZ FORMULA gives $2d + 1 = e_1 + e_2 + e_3$. **Fact:** A dynamical Belyi map can be defined over \mathbb{Q} .

Why "dynamical"?

A dynamical Belyi map can be iterated and therefore exhibits dynamical behaviour. (More about that soon!) Write $f^n = f \circ \ldots \circ f$ for the *n*th iterate of *f*, where $f^1 = f$. Then f^n is again a dynamical Belyi map.

Galois groups

Dynamics 000000000000000

Examples of dynamical Belyi maps

Example. The map $f(x) = -2x^3 + 3x^2$ fits into a family of dynamical Belyi maps of type (d; d - k, k + 1, d) given by

$$f(x) = cx^{d-k}(a_0x^k + \ldots + a_{k-1}(x) + a_k),$$

with
$$a_i = \frac{(-1)^{k-i}}{d-i} {k \choose i}$$
 and $c = \frac{1}{k!} \prod_{j=0}^k (d-j)$.

(Dessins were worked out by Manes, Melamed, Tobin.)

Galois groups

Let f be a dynamical Belyi map. It is defined over $\overline{\mathbb{Q}}$ (Belyi) and even \mathbb{Q} (dynamical).

The cover $f^n : \mathbb{P}^1_{\mathbb{Q}} \to \mathbb{P}^1_{\mathbb{Q}}$ corresponds to a function field extension F_n over $F_0 = \mathbb{Q}(t)$. Define

 $G_{n,\mathbb{Q}} := \operatorname{Gal}(\widetilde{F_n}/\mathbb{Q}(t)).$

Similarly, we define

$$G_{n,\overline{\mathbb{Q}}} := \operatorname{Gal}((\widetilde{F_n \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}})/\overline{\mathbb{Q}}(t)).$$

Finally, choose $a \in \mathbb{Q}$ s.t. (the numerator of) $f^n - a$ is irreducible for all *n*. Let $K_{n,a}$ be the extension of $K_{0,a} := \mathbb{Q}$ obtained by adjoining a root of (the numerator of) $f^n - a$, and define

$$G_{n,a} := \operatorname{Gal}(\widetilde{K_{n,a}}/\mathbb{Q}).$$

Galois groups

For a dynamical Belyi map f, we want to determine the groups

$$G_{n,\overline{\mathbb{Q}}}, \qquad G_{n,\mathbb{Q}}, \qquad G_{n,a}.$$

First observations:

We have

$$G_{n,\overline{\mathbb{Q}}}\subseteq G_{n,\mathbb{Q}}.$$

When equality holds, we say the groups *descend*; we will give sufficient conditions for descent.

Since $a \in \mathbb{P}^1(\mathbb{Q}) \setminus \{0, 1, \infty\}$ is such that (the numerator of) $f^n - a$ is irreducible, then $K_{n,a} \otimes_{\mathbb{Q}} \mathbb{Q}(t) \simeq F_n$, inducing

$$G_{n,a} \subseteq G_{n,\mathbb{Q}}.$$

Arboreal representations

Idea

Embed all Galois groups into automorphism groups of trees.

For $d \ge 2$ and $n \ge 1$, let T_n be the *d*-ary rooted tree of level *n*:

The outer nodes of T_n are the *leaves*. There are d^n leaves, so $\operatorname{Aut}(T_n) \hookrightarrow S_{d^n}$.

Arboreal representations

In fact Aut $(T_n) \simeq \operatorname{Aut}(T_{n-1}) \wr \operatorname{Aut}(T_1) \simeq \operatorname{Aut}(T_{n-1}) \wr S_d$. Write $(\underline{\sigma}, \tau) = ((\sigma_1, \ldots, \sigma_d), \tau) \in \operatorname{Aut}(T_n)$.

Picking t (or a) as our root and its preimages as the other nodes, we get the ARBOREAL GALOIS REPRESENTATION

$$G_{n,\mathbb{Q}} \hookrightarrow \operatorname{Aut}(T_n).$$

The groups $G_{n,\overline{\mathbb{Q}}}$

Idea

The groups $G_{n,\overline{\mathbb{Q}}} \subseteq \operatorname{Aut}(T_n)$ are completely (and combinatorially) determined by the generating system of f^n .

Recall: f has generating system $g = (g_1, g_2, g_3)$, where g_i are e_i -cycles in S_d s.t. $g_1g_2g_3 = 1$. May take:

$$g_1 = (d, d - 1, \dots, e_3, 1, 2, \dots, d - e_2);$$

 $g_2 = (d - e_2 + 1, d - e_2 + 2, \dots, d);$
 $g_3 = (e_3, e_3 - 1, \dots, 2, 1).$

Then

$$G_{1,\overline{\mathbb{Q}}} = \langle g_1, g_2, g_3
angle \simeq egin{cases} S_d & ext{ if one of the } e_i ext{ is even;} \ A_d & ext{ otherwise.} \end{cases}$$

The groups $G_{n,\overline{\mathbb{Q}}}$

For $n \ge 2$, define generating system $(g_{1,n}, g_{2,n}, g_{3,n})$ of f^n inductively:

$$g_{1,n} = ((g_{1,n-1}, id, \dots, id), g_1);$$

$$g_{2,n} = ((id, \dots, id, g_{2,n-1}, id, \dots, id), g_2);$$

$$g_{3,n} = ((id, \dots, id, g_{3,n-1}, id, \dots, id), g_3).$$

Then $G_{n,\overline{\mathbb{Q}}} = \langle g_{1,n}, g_{2,n}, g_{3,n} \rangle$, and

Theorem 1 (Bouw-Ejder-K.)

• If $G_{1,\overline{\mathbb{Q}}} \simeq S_d$, then inductively

$$G_{n,\overline{\mathbb{Q}}} \simeq (G_{n-1} \wr G_1) \cap \ker(\operatorname{sgn}_2) \subseteq \operatorname{Aut}(T_n),$$

where
$$\operatorname{sgn}_2 : \operatorname{Aut}(\mathcal{T}_n) \xrightarrow{\pi_2} \operatorname{Aut}(\mathcal{T}_2) \to \{\pm 1\},$$

 $((\sigma_1, \ldots, \sigma_d), \tau) \mapsto \operatorname{sgn}(\tau) \prod \operatorname{sgn}(\sigma_i).$
If $G_{1,\overline{\mathbb{Q}}} \simeq A_d$, then $G_{n,\overline{\mathbb{Q}}} \simeq \wr^n A_d \subseteq \operatorname{Aut}(\mathcal{T}_n)$ for all $n \ge 2.$

Galois groups

Descent: when is $G_{n,\overline{\mathbb{Q}}} = G_{n,\mathbb{Q}}$?

Theorem 2 (Bouw-Ejder-K.)

If
$$G_{1,\overline{\mathbb{Q}}} = G_{1,\mathbb{Q}} \simeq A_d$$
, or if $G_{1,\overline{\mathbb{Q}}} \simeq S_d$ and f has odd degree and is either a polynomial or of type $(d; d-k, 2k+1, d-k)$, then $G_{n,\overline{\mathbb{Q}}} = G_{n,\mathbb{Q}}$ for all $n \ge 1$.

Proof

- By Theorem 1: if $G_{2,\overline{\mathbb{Q}}} = G_{2,\mathbb{Q}}$, then $G_{n,\overline{\mathbb{Q}}} \simeq G_{n,\mathbb{Q}}$, $\forall n \geq 2$.
- Write f(x) = g(x)/h(x) and $g(x) th(x) = \ell \prod_i (x t_i)$. We have $G_{2,\mathbb{Q}} \subseteq \ker(\operatorname{sgn}_2)$ if and only if

$$\Delta(g(x) - th(x)) \prod_{i} \Delta(f(x) - t_i) = u(1 - t)^{2(e_2 - 1)} t^{2(e_1 - 1)}$$

(with *u* constant) is a square in $\mathbb{Q}(t)$.

Specialisation: when is $G_{n,\overline{\mathbb{O}}} \subseteq G_{n,a}$?

(We have
$$G_{n,\overline{\mathbb{Q}}} \subseteq G_{n,\mathbb{Q}}$$
 and suppose that $G_{n,a} \subseteq G_{n,\mathbb{Q}}$.)

Theorem 3 (Bouw-Ejder-K.)

Choose $a \in \mathbb{P}^1(\mathbb{Q}) \setminus \{0, 1, \infty\}$ and distinct primes p, q_1, q_2, q_3 s.t.:

(†)
$$\begin{cases} f(x) \equiv x^{d} \pmod{p}; \\ f \text{ has good separable reduction modulo } q_{1}, q_{2}, q_{3}; \\ v_{p}(a) = 1 \text{ and } v_{q_{1}}(a) > 0, v_{q_{2}}(1-a) > 0, v_{q_{3}}(a) < 0. \end{cases}$$

Then
$$G_{n,\overline{\mathbb{Q}}} \subseteq G_{n,a}$$
 for all $n \geq 2$.

Proof

- Conditions at p: $G_{n,a}$ is a transitive subgroup of S_{d^n} .
- Conditions at q₁, q₂, q₃: prescribe the ramification in K_{n,a}/K_{n-1,a} & construct elements of G_{n,a} conjugate to the g_{i,n} ∈ G_{n,Q}.

Galois groups

Summary of Galois groups

Theorem 1: We understand $G_{n,\overline{\mathbb{Q}}} = \langle g_{1,n}, g_{2,n}, g_{3,n} \rangle$.

(1): We have $G_{n,\overline{\mathbb{Q}}} \subseteq G_{n,\mathbb{Q}}$. Theorem 2: This is an equality if $G_{1,\overline{\mathbb{Q}}} = G_{1,\mathbb{Q}}$ and $G_{2,\overline{\mathbb{Q}}} = G_{2,\mathbb{Q}}$.

(2): Theorem 3: We have $G_{n,\overline{\mathbb{O}}} \subseteq G_{n,a}$ when conditions (†) hold.

(3): We have $G_{n,a} \subseteq G_{n,\mathbb{Q}}$ if " $f^n - a$ " is irreducible.

Conclusion: If all these conditions hold, all groups are equal!

Dynamical system

A dynamical Belyi map $f: \mathbb{P}^1 \to \mathbb{P}^1$ yields a DYNAMICAL SYSTEM

 $(f, \mathbb{P}^1).$

Considering $f : \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}$, we can study this dynamical system by computing its JULIA SET, i.e., the set

$$\{z \in \mathbb{C} : f^n(z) \not\to \infty \text{ as } n \to \infty\}.$$

Galois groups

Dynamics

Orbits

For $x \in \mathbb{P}^1$, we may form the DYNAMICAL SEQUENCE $(a_n)_{n \ge 1}$ where $a_1 = x$ and $a_{n+1} = f(a_n)$ for $n \ge 2$. This is also called the ORBIT of x.

Classification of orbits:

- If $f^n(x) = x$ for some $n \ge 1$, then x is PERIODIC;
- If $f^m(x)$ is periodic for some $m \ge 1$, then x is PREPERIODIC;
- Otherwise, x is a WANDERING POINT.

Figure: A preperiodic point.

Want to describe the (pre)periodic points of dynamical Belyi maps.

Preperiodic points

Theorem (Silverman)

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree d over a local field K. Assume f has good reduction at p and let P be a periodic point of f of period n. Then \overline{P} is a periodic point of \overline{f} of period m say. Let $r = |(\overline{f}^n)'(\overline{P})|$. Then

n=m; or n=mr; or $n=mrp^e, e\in\mathbb{Z}_{>0}.$

Theorem 4 (Anderson-Bouw-Ejder-Girgin-K.-Manes)

Let f be a dynamical Belyi map over \mathbb{Q} of type $(d = p^{\ell}d', e_1, e_2, e_3)$. Then $f \equiv x^d \pmod{p}$ if and only if $e_2 \leq p^{\ell}$.

Theorem 5 (Anderson-Bouw-Ejder-Girgin-K.-Manes)

Let f be a dynamical Belyi map over \mathbb{Q} of type (d, e_1, e_2, e_3) such that $e_2 \leq p^{\ell}$ and either $2^{\ell}|d$ or $3^{\ell}|d$ or $d = p^{\ell}$. Then the rational preperiodic points of f are all rational fixed points of f and their preimages.

Preperiodic points

Theorem 5 (Anderson-Bouw-Ejder-Girgin-K.-Manes)

Let f be a dynamical Belyi map over \mathbb{Q} of type (d, e_1, e_2, e_3) such that $e_2 \leq p^{\ell}$ and either $2^{\ell}|d$ or $3^{\ell}|d$ or $d = p^{\ell}$. Then the rational preperiodic points of f are all rational fixed points of f and their preimages.

Example. For
$$f(x) = -2x^3 + 3x^2$$
 of type (3; 2, 2, 3) we find

Rational periodic points

$$\operatorname{Per}(f) = \{0, \frac{1}{2}, 1, \infty\};$$

 $\operatorname{PrePer}(f) = \{-\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, \infty\}.$

Rational preperiodic points

Dynamical sequences

Let $(a_n)_{n\geq 1}$ be a dynamical sequence for a map f. We want to know the density δ of each of the sets

 $\mathcal{Q} := \{ p \text{ prime } : a_i \equiv a \pmod{p} \text{ for some } i \ge 0 \};$ $\mathcal{P} := \{ p \text{ prime } : p \text{ divides at least one non-zero term of } (a_n)_{n \ge 1} \}.$

We see that $\delta(Q) \leq$

 $\delta(\{p: a_i \not\equiv a \pmod{p} \text{ for } i \leq n-1 \text{ and } f^n - a \text{ has a root mod } p\}).$

Chebotarev density theorem:

$$= \frac{1}{|G_{n,a}|} |\{ \text{ elements of } G_{n,a} \subseteq \operatorname{Aut}(T_n) \text{ fixing a leaf } \}|.$$

Dynamical sequences

$$\mathcal{Q} := \{p \text{ prime } : a_i \equiv a \pmod{p} \text{ for some } i \geq 0\};$$

 $\mathcal{P} := \{p \text{ prime } : p \text{ divides at least one non-zero term of } (a_n)_{n \ge 1}\}.$

Theorem 6 (Bouw-Ejder-K.)

Let f be a dynamical Belyi map with splitting field K and let $a \in \mathbb{P}^1(\mathbb{Q}) \setminus \{0, 1, \infty\}$ such that $G_{n,a} \simeq G_{n,\mathbb{Q}} \simeq G_{n,\overline{\mathbb{Q}}}$ for all $n \ge 1$. Consider $(a_n)_{n \ge 1}$ with $a_1 = a$.

- We have $\delta(\mathcal{Q}) = 0$.
- ② If $G_{n,b_j,K} \simeq G_{n,K} \simeq G_{n,\overline{\mathbb{Q}}}$ for any non-zero preimage b_j of zero under f, then also $\delta(\mathcal{P}) = 0$.

Proof

2
$$\delta(\mathcal{P}) = \delta(\{p : \exists p \mid p \text{ s.t. } a_i \equiv b_j \pmod{p} \text{ for some } i, j\}).$$