# Constructing abelian varieties providing solutions to the inverse Galois problem for symplectic groups 

## Valentijn Karemaker (Utrecht University)

Joint with S. Arias-de-Reyna, C. Armana, M. Rebolledo, L. Thomas and N. Vila Journées Arithmétiques, Debrecen

July 9, 2015

## Inverse Galois Prolem (IGP)

The IGP asks:

## IGP

Let $G$ be a finite group. Does there exist a Galois extension $L / \mathbb{Q}$ such that $\operatorname{Gal}(L / \mathbb{Q}) \cong G$ ?

Galois representations may answer IGP for finite linear groups.

## Goal

Obtain realisations of $\operatorname{GSp}\left(6, \mathbb{F}_{\ell}\right)$ as a Galois group over $\mathbb{Q}$.
We consider Galois representations attached to abelian varieties.

## Abelian varieties

Let $A / \mathbb{Q}$ be a principally polarised abelian variety of dimension $g$.
$A(\overline{\mathbb{Q}})$ is a group. Let $\ell$ be a prime.
Torsion points $A[\ell]:=\{P \in A(\overline{\mathbb{Q}}):[\ell] P=0\} \cong(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$.
$G_{\mathbb{Q}}$ acts on $A[\ell]$, yielding a Galois representation

$$
\rho_{A, \ell}: G_{\mathbb{Q}} \rightarrow G L(A[\ell]) \cong \mathrm{GL}\left(2 g, \mathbb{F}_{\ell}\right)
$$

The action is compatible with the (symplectic) Weil pairing, hence

$$
\rho_{A, \ell}: G_{\mathbb{Q}} \rightarrow \operatorname{GSp}(A[\ell],\langle\cdot, \cdot\rangle) \cong \operatorname{GSp}\left(2 g, \mathbb{F}_{\ell}\right)
$$

Surjective $\rho_{A, \ell}$ solve IGP for general symplectic groups.

## Sufficient condition for surjectivity of $\rho_{A, \ell}$

## Proposition

If $\operatorname{Im}\left(\rho_{A, \ell}\right) \supset \operatorname{Sp}(A[\ell],\langle\cdot, \cdot\rangle)$ then $\operatorname{Im}\left(\rho_{A, \ell}\right)=\operatorname{GSp}(A[\ell],\langle\cdot, \cdot\rangle)$.
PROOF: We have an exact sequence

$$
1 \rightarrow \operatorname{Sp}(A[\ell],\langle\cdot, \cdot\rangle) \rightarrow \operatorname{GSp}(A[\ell],\langle\cdot, \cdot\rangle) \xrightarrow{m} \mathbb{F}_{\ell}^{\times} \rightarrow 1
$$

where $m: A \mapsto a$ when $\left\langle A v_{1}, A v_{2}\right\rangle=a\left\langle v_{1}, v_{2}\right\rangle$ for all $v_{1}, v_{2} \in A[\ell]$. $G_{\mathbb{Q}}$ acts such that $\left.m\right|_{\operatorname{Im}\left(\rho_{A, \ell}\right)}=\chi_{\ell}$, the surjective $\bmod \ell$ cyclotomic character.

## Structure of $S p$

Let $V$ be a finite-dimensional vector space over $\mathbb{F}_{\ell}$, endowed with a symplectic pairing $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}_{\ell}$.

A transvection is an element $T \in \operatorname{GSp}(V,\langle\cdot, \cdot\rangle)$ which fixes a hyperplane $H \subset V$.

Theorem (Arias-de-Reyna \& Kappen, 2013)
Let $\ell \geq 5$ and let $G \subset \operatorname{GSp}(V,\langle\cdot, \cdot\rangle)$ be a subgroup containing both a non-trivial transvection and an element of non-zero trace whose characteristic polynomial is irreducible. Then $G \supset \operatorname{Sp}(V,\langle\cdot, \cdot\rangle)$.

## Main result

## Theorem 1 (AdR-A-K-R-T-V)

Let $\ell \geq 13$ be a prime number.
There is a family of projective genus 3 curves $C / \mathbb{Q}$ for which

$$
\operatorname{Im}\left(\rho_{\mathrm{Jac}(C), \ell}\right)=\operatorname{GSp}\left(6, \mathbb{F}_{\ell}\right)
$$

Namely, for any distinct odd primes $p, q \neq \ell$ with $q>1.82 \ell^{2}$, there exist $f_{p} \in \mathbb{F}_{p}[x, y]$ and $f_{q} \in \mathbb{F}_{q}[x, y]$ such that any $f \in \mathbb{Z}[x, y]$ satsifying

$$
f \equiv f_{q} \quad(\bmod q) \quad \text { and } \quad f \equiv f_{p} \quad\left(\bmod p^{3}\right)
$$

defines such a curve $C / \mathbb{Q}: f(x, y)=0$.

## Main ideas for Theorem 1

$p$ and $q$ are auxiliary primes.
$C_{p} / \mathbb{F}_{p}: f_{p}(x, y)=0$ yields a transvection,
$C_{q} / \mathbb{F}_{q}: f_{q}(x, y)=0$ yields an element of irreducible characteristic polynomial and non-zero trace.

Simultaneously (Chinese remainder theorem) lift $f_{p}$ and $f_{q}$ to $f / \mathbb{Z}$.
$C / \mathbb{Q}: f(x, y)=0$ is such that $\operatorname{Jac}(C)$ has surjective $\rho_{\mathrm{Jac}(C), \ell}$.

## Finding transvections: Hall's condition

## Proposition (Hall, 2011)

Let $A / \mathbb{Q}$ be a principally polarised $g$-dimensional abelian variety. If the Néron model of $A / \mathbb{Z}$ has a semistable fibre at $p$ with toric dimension 1 , and if $p \nmid \ell$ and $\ell \nmid\left|\Phi_{p}\right|$, then $\operatorname{Im}\left(\rho_{A, \ell}\right)$ contains a transvection $T$.

We may take $T$ to be the image of a generator of the inertia subgroup of any prime in $\mathbb{Q}(A[\ell])$ lying over $p$.

## Finding transvections: Explicit models

Let $f_{p}(x, y) \in \mathbb{Z}_{p}[x, y]$ be one of the following:
(H) $y^{2}-x(x-p) m(x)$,
$m(x) \in \mathbb{Z}_{p}[x]$ of degree 5 or 6 with simple $\neq 0$ roots $\bmod p ;$
(Q) $x^{4}+y^{4}+x^{2}-y^{2}+p x$.

Then $C_{p} / \mathbb{Q}_{p}: f_{p}(x, y)=0$ is a smooth projective geometrically connected genus 3 curve.

It has a semistable fibre at $p$ with one ordinary node of thickness 2 . Hence $\left|\Phi_{p}\right|=2$.

Toric dimension $=$ rank of $H^{1}\left(\Gamma\left(C_{\overline{\mathbb{F}}_{p}}\right), \mathbb{Z}\right)=1$.
Hall's result implies: For $2, p, \ell$ distinct primes, $\operatorname{Im}\left(\rho_{\mathrm{Jac}}\left(C_{p}\right), \ell\right)$ contains a transvection.

## Finding irr. characteristic polynomial of non-zero trace

## Theorem 2 (AdR-A-K-R-T-V)

Let $\ell \geq 13$ be a prime number.
For each prime $q>1.82 \ell^{2}$, there exist a smooth geometrically connected curve $C_{q} / \mathbb{F}_{q}$ of genus 3 , whose Jacobian $\operatorname{Jac}\left(C_{q}\right)$ is a 3-dimensional ordinary absolutely simple abelian variety over $\mathbb{Q}$ such that the characteristic polynomial of its Frobenius endomorphism is irreducible moulo $\ell$ and has non-zero trace.

## Weil q-polynomials

Fix a prime $\ell$.
A Weil $q$-polynomial is a monic polynomial $P_{q} \in \mathbb{Z}[t]$ of even degree, whose complex roots all have absolute value $\sqrt{q}$.

Any degree 6 Weil $q$-polynomial will look like

$$
P_{q}(t)=t^{6}+a t^{5}+b t^{4}+c t^{3}+q b t^{2}+q^{2} a t+q^{3} .
$$

## Obtaining an abelian variety

| Weil poly. $P_{q}$ | $A / \mathbb{Q}$ | $\xrightarrow{\text { (Oort-Ueno, Serre) }} \mathrm{Jac}\left(C_{q}\right)$ |
| :---: | :---: | :---: |
| degree 6 | dim. 3 | genus 3 |
| ordinary | ordinary | "good" |
| irr./ $\mathbb{Z}$ | abs. simple | geom. irr. |
| irr. $\bmod \ell$, | Frob irr., | idem |
| $a \not \equiv 0 \bmod \ell$ | $\neq 0$ trace |  |

## End of proof: existence of suitable $P_{q}$

## Proposition (AdR-A-K-R-T-V)

For any $\ell \geq 13$ and $q>1.82 \ell^{2}$, there exists such a Weil polynomial $P_{q} \in \mathbb{Z}[t]$, with $|a|,|b|,|c|<\frac{\ell-1}{2}$.

This proves Theorem 2, hence Theorem 1.

Thank you for your attention!

