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Inverse Galois Prolem (IGP)

The IGP asks:

IGP

Let G be a finite group. Does there exist a Galois extension L/Q
such that Gal(L/Q) ∼= G?

Galois representations may answer IGP for finite linear groups.

Goal

Obtain realisations of GSp(6,F`) as a Galois group over Q.

We consider Galois representations attached to abelian varieties.
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Abelian varieties

Let A/Q be a principally polarised abelian variety of dimension g .

A(Q̄) is a group. Let ` be a prime.
Torsion points A[`] := {P ∈ A(Q̄) : [`]P = 0} ∼= (Z/`Z)2g .
GQ acts on A[`], yielding a Galois representation

ρA,` : GQ → GL(A[`]) ∼= GL(2g ,F`).

The action is compatible with the (symplectic) Weil pairing, hence

ρA,` : GQ → GSp(A[`], 〈·, ·〉) ∼= GSp(2g ,F`).

Surjective ρA,` solve IGP for general symplectic groups.
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Sufficient condition for surjectivity of ρA,`

Proposition

If Im(ρA,`) ⊃ Sp(A[`], 〈·, ·〉) then Im(ρA,`) = GSp(A[`], 〈·, ·〉).

PROOF: We have an exact sequence

1→ Sp(A[`], 〈·, ·〉)→ GSp(A[`], 〈·, ·〉) m−→ F×
` → 1

where m : A 7→ a when 〈Av1,Av2〉 = a〈v1, v2〉 for all v1, v2 ∈ A[`].
GQ acts such that m|Im(ρA,`) = χ`, the surjective mod ` cyclotomic
character.
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Structure of Sp

Let V be a finite-dimensional vector space over F`, endowed with a
symplectic pairing 〈·, ·〉 : V × V → F`.

A transvection is an element T ∈ GSp(V , 〈·, ·〉) which fixes a
hyperplane H ⊂ V .

Theorem (Arias-de-Reyna & Kappen, 2013)

Let ` ≥ 5 and let G ⊂ GSp(V , 〈·, ·〉) be a subgroup containing both
a non-trivial transvection and an element of non-zero trace whose
characteristic polynomial is irreducible. Then G ⊃ Sp(V , 〈·, ·〉).
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Main result

Theorem 1 (AdR-A-K-R-T-V)

Let ` ≥ 13 be a prime number.
There is a family of projective genus 3 curves C/Q for which

Im(ρJac(C),`) = GSp(6,F`).

Namely, for any distinct odd primes p, q 6= ` with q > 1.82`2,
there exist fp ∈ Fp[x , y ] and fq ∈ Fq[x , y ] such that any
f ∈ Z[x , y ] satsifying

f ≡ fq (mod q) and f ≡ fp (mod p3),

defines such a curve C/Q : f (x , y) = 0.
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Main ideas for Theorem 1

p and q are auxiliary primes.

Cp/Fp : fp(x , y) = 0 yields a transvection,

Cq/Fq : fq(x , y) = 0 yields an element of irreducible characteristic
polynomial and non-zero trace.

Simultaneously (Chinese remainder theorem) lift fp and fq to f /Z.

C/Q : f (x , y) = 0 is such that Jac(C ) has surjective ρJac(C),`.
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Finding transvections: Hall’s condition

Proposition (Hall, 2011)

Let A/Q be a principally polarised g -dimensional abelian variety.
If the Néron model of A/Z has a semistable fibre at p with toric
dimension 1, and if p - ` and ` - |Φp|, then Im(ρA,`) contains a
transvection T .

We may take T to be the image of a generator of the inertia
subgroup of any prime in Q(A[`]) lying over p.
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Finding transvections: Explicit models

Let fp(x , y) ∈ Zp[x , y ] be one of the following:

(H) y2 − x(x − p)m(x),
m(x) ∈ Zp[x ] of degree 5 or 6 with simple 6= 0 roots mod p;

(Q) x4 + y4 + x2 − y2 + px .

Then Cp/Qp : fp(x , y) = 0 is a smooth projective geometrically
connected genus 3 curve.

It has a semistable fibre at p with one ordinary node of thickness 2.
Hence |Φp| = 2.

Toric dimension = rank of H1(Γ(CFp
),Z) = 1.

Hall’s result implies: For 2, p, ` distinct primes, Im(ρJac(Cp),`)
contains a transvection.
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Finding irr. characteristic polynomial of non-zero trace

Theorem 2 (AdR-A-K-R-T-V)

Let ` ≥ 13 be a prime number.
For each prime q > 1.82`2, there exist a smooth geometrically
connected curve Cq/Fq of genus 3,
whose Jacobian Jac(Cq) is a 3-dimensional ordinary absolutely
simple abelian variety over Q such that the characteristic
polynomial of its Frobenius endomorphism is irreducible moulo `
and has non-zero trace.
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Weil q-polynomials

Fix a prime `.

A Weil q-polynomial is a monic polynomial Pq ∈ Z[t] of even
degree, whose complex roots all have absolute value

√
q.

Any degree 6 Weil q-polynomial will look like

Pq(t) = t6 + at5 + bt4 + ct3 + qbt2 + q2at + q3.
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Obtaining an abelian variety

Weil poly. Pq
(Honda-Tate)−−−−−−−−→ A/Q (Oort-Ueno, Serre)−−−−−−−−−−−→ Jac(Cq)

degree 6 dim. 3 genus 3

ordinary ordinary “good”

irr./Z abs. simple geom. irr.

irr. mod `, Frob irr., idem

a 6≡ 0 mod ` 6= 0 trace
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End of proof: existence of suitable Pq

Proposition (AdR-A-K-R-T-V)

For any ` ≥ 13 and q > 1.82`2, there exists such a Weil
polynomial Pq ∈ Z[t], with |a|, |b|, |c | < `−1

2 .

This proves Theorem 2, hence Theorem 1.

Thank you for your attention!
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