Fully maximal and minimal supersingular abelian varieties

Valentijn Karemaker (University of Pennsylvania)

Joint with R. Pries
Journées Arithmétiques, Caen

July 4, 2017

Motivation

Let X / \mathbb{F}_{q} be a smooth projective connected curve of genus g.
For many applications, we want to find $X\left(\mathbb{F}_{q}\right)$, or $\left|X\left(\mathbb{F}_{q}\right)\right|$.
The zeta function of X / \mathbb{F}_{q} is

$$
Z\left(X / \mathbb{F}_{q}, T\right)=\exp \left(\sum_{m \geq 1}\left|X\left(\mathbb{F}_{q^{m}}\right)\right| \frac{T^{m}}{m}\right)=\frac{L\left(X / \mathbb{F}_{q}, T\right)}{(1-T)(1-q T)}
$$

the roots $\alpha_{1}, \bar{\alpha}_{1}, \ldots, \alpha_{g}, \bar{\alpha}_{g}$ of $P\left(X / \mathbb{F}_{q}, T\right)=T^{2 g} L\left(X / \mathbb{F}_{q}, T^{-1}\right)$ are the Weil numbers of X. These all have absolute value \sqrt{q}.

The Weil conjectures imply the Hasse-Weil bound:

$$
\left|\left|X\left(\mathbb{F}_{q}\right)\right|-(q+1)\right| \leq 2 g \sqrt{q}
$$

In particular, $\left|X\left(\mathbb{F}_{q}\right)\right|$ is
$\left\{\begin{array}{l}\text { maximal iff } P\left(X / \mathbb{F}_{q}, T\right)=(T+\sqrt{q})^{2 g} \text { iff } \alpha_{i} / \sqrt{q}=-1 \forall i, \\ \text { minimal iff } P\left(X / \mathbb{F}_{q}, T\right)=(T-\sqrt{q})^{2 g} \text { iff } \alpha_{i} / \sqrt{q}=1 \forall i .\end{array}\right.$

Maximal and minimal abelian varieties

Let A / \mathbb{F}_{q} be a g-dimensional abelian variety.
(We will always assume A to be principally polarised.)

$$
Z\left(A / \mathbb{F}_{q}, T\right)=\exp \left(\sum_{m \geq 1}\left|A\left(\mathbb{F}_{q^{m}}\right)\right| \frac{T^{m}}{m}\right)
$$

is determined by $P\left(A / \mathbb{F}_{q}, T\right)$, the characteristic polynomial of the relative Frobenius endomorphism π_{A} of A.
Its roots $\left\{\alpha_{1}, \bar{\alpha}_{1}, \ldots, \alpha_{g}, \bar{\alpha}_{g}\right\}$ are the Weil numbers of A / \mathbb{F}_{q}.
Let $\left\{z_{i}=\frac{\alpha_{i}}{\sqrt{q}}, \bar{z}_{i}\right\}_{1 \leq i \leq g}$ be the normalised Weil numbers of A / \mathbb{F}_{q}.

Definition (maximal/minimal)

A / \mathbb{F}_{q} is $\left\{\begin{array}{l}\text { maximal if all its } \mathrm{NWN} \text { are }-1 ; \\ \text { minimal if all its NWN are } 1 .\end{array}\right.$

Supersingular abelian varieties

A / \mathbb{F}_{q} is maximal (minimal) if all its NWN are -1 (1).

Definition (supersingular)

An elliptic curve E is supersingular if $E[p]\left(\overline{\mathbb{F}}_{q}\right)=\{0\}$. A is supersingular if $A \times \overline{\mathbb{F}}_{q} \sim E^{g} \times \overline{\mathbb{F}}_{q}$ where E is supersingular, or equivalently, if its normalised Weil numbers are roots of unity.

If the Weil numbers of A / \mathbb{F}_{q} are $\left\{\alpha_{i}, \bar{\alpha}_{i}\right\}_{1 \leq i \leq g}$, then those of $A / \mathbb{F}_{q^{m}}$ are $\left\{\alpha_{i}^{m}, \bar{\alpha}_{i}^{m}\right\}_{1 \leq i \leq g}$. Hence:

- If A / \mathbb{F}_{q} is maximal or minimal, then A is supersingular.
- If A / \mathbb{F}_{q} is supersingular, then A is minimal over some $\mathbb{F}_{q^{m}}$.

Question

When does a supersingular A / \mathbb{F}_{q} become maximal before it becomes minimal?

Period and parity

Definition (period)

The $\left(\mathbb{F}_{q^{-}}\right)$period of A / \mathbb{F}_{q} is the smallest $m \in \mathbb{N}_{>0}$ such that $A / \mathbb{F}_{q^{m}}$ is either maximal $\left(z_{i}=-1 \forall i\right)$ or minimal $\left(z_{i}=1 \forall i\right) ; r m$ is even.

Definition (parity)

The ($\mathbb{F}_{q^{-}}$) parity of A / \mathbb{F}_{q} is $+1(-1)$ if A first becomes maximal (minimal).

Example. Consider $E / \mathbb{F}_{2}: y^{2}+y=x^{3}$.
$E\left(\mathbb{F}_{2}\right)=\{(0,1),(0,0), \mathcal{O}\}$ so $\left|E\left(\mathbb{F}_{2}\right)\right|=3$ and $\operatorname{Tr}\left(\pi_{E}\right)=0$.
So $P\left(E / \mathbb{F}_{2}, T\right)=T^{2}+2=(T-\sqrt{-2})(T+\sqrt{-2})$.
The normalised Weil numbers of E / \mathbb{F}_{2} are $\{i,-i\}$.
Hence, the normalised Weil numbers of E / \mathbb{F}_{4} are $\{-1,-1\}$.
So E has \mathbb{F}_{2}-period 2 and \mathbb{F}_{2}-parity +1 .

Twists

Let $K=\mathbb{F}_{q}$ and $k=\overline{\mathbb{F}}_{q}$.
A K-twist of A / K is an abelian variety A^{\prime} / K such that $A \simeq_{k} A^{\prime}$.
Twists are classified by $[\xi] \in H^{1}\left(G_{K}, \operatorname{Aut}_{k}(A)\right)$.
A and A^{\prime} may have different Weil numbers!
Example. Consider $E / \mathbb{F}_{3}: y^{2}=x^{3}-x$. Its NWN are $\{i,-i\}$. Let $\alpha \in \mathbb{F}_{33}$ such that $\alpha^{3}-\alpha=1$. Then $(x, y) \mapsto(x-\alpha, y)$ yields a twist $E^{\prime} / \mathbb{F}_{3}: y^{2}+1=x^{3}-x$. Its NWN are $\left\{\frac{\sqrt{3}+i}{2}, \frac{\sqrt{3}-i}{2}\right\}$.

In general:

satisfies

$$
\begin{aligned}
& \phi^{-1} \circ \pi_{A^{\prime}} \circ \phi=\pi_{A} \circ g^{-1} \\
& \text { for } g=\xi\left(F r_{K}\right) \in \operatorname{Aut}_{k}(A) \\
& \text { and }\left\langle F r_{K}\right\rangle \simeq G_{K}
\end{aligned}
$$

Example. If A / K is maximal and A^{\prime} / K minimal, then $g=[-1]$.

New question

When do A / \mathbb{F}_{q} and/or its \mathbb{F}_{q}-twists have parity +1 ?
To answer this question, we classify supersingular A / \mathbb{F}_{q} using the following types:

Definition (fully maximal, fully minimal, mixed)
A / \mathbb{F}_{q} is fully maximal if all its \mathbb{F}_{q}-twists have parity +1 .
A / \mathbb{F}_{q} is fully minimal if all its \mathbb{F}_{q}-twists have parity -1 .
A / \mathbb{F}_{q} is mixed if both parities occur.
The type of A / \mathbb{F}_{q} depends on:

- the 2-divisibility of the orders of the normalised Weil numbers;
- the Frobenius conjugacy classes in $\mathrm{Aut}_{\overline{\mathbb{F}}_{q}}(A)$.

Supersingular elliptic curves

Let $\mathbb{F}_{q}=\mathbb{F}_{p^{r}}$ and let E / \mathbb{F}_{q} be a supersingular elliptic curve. Then $P\left(E / \mathbb{F}_{q}, T\right)=T^{2}-\beta T+q$ for some $\beta \in \mathbb{Z}$ such that $p \mid \beta$. A supersingular E / \mathbb{F}_{q} is in one of the following cases.

Case n_{E}	Conditions on r and p	β	NWN $/ \mathbb{F}_{q}$	Parity
1a	r even	$2 \sqrt{q}$	$\{1,1\}$	-1
1b	r even	$-2 \sqrt{q}$	$\{-1,-1\}$	1
2a	r even, $p \not \equiv 1 \bmod 3$	\sqrt{q}	$\left\{-\zeta_{3},-\bar{\zeta}_{3}\right\}$	1
2b	r even, $p \neq 1 \bmod 3$	$-\sqrt{q}$	$\left\{\zeta_{3}, \bar{\zeta}_{3}\right\}$	-1
3	r even, $p \equiv 3(\bmod 4)$	0	$\{i,-i\}$	1
	or r odd			
4a	r odd, $p=2$	$\sqrt{2 q}$	$\left\{\zeta_{8}, \bar{\zeta}_{8}\right\}$	1
4b	r odd, $p=2$	$-\sqrt{2 q}$	$\left\{\zeta_{8}^{5}, \bar{\zeta}_{8}^{5}\right\}$	1
4c	r odd, $p=3$	$\sqrt{3 q}$	$\left\{\zeta_{12}, \bar{\zeta}_{12}\right\}$	1
4d	r odd, $p=3$	$-\sqrt{3 q}$	$\left\{\zeta_{12}^{7}, \bar{\zeta}_{12}^{7}\right\}$	1

Supersingular elliptic curves

A supersingular elliptic curve in char. p is defined over \mathbb{F}_{p} or $\mathbb{F}_{p^{2}}$.

Theorem

Let E be a supersingular elliptic curve. If E is defined over \mathbb{F}_{p}, then it is fully maximal. Otherwise, it is mixed.

The theorem follows from the following results:

- If $p=2$, the unique supersingular curve $E: y^{2}+y=x^{3}$ is fully maximal.
- Let $p \geq 3$. If Aut $_{\overline{\mathbb{F}}_{p}}(E) \nsucceq \mathbb{Z} / 2 \mathbb{Z}$, then E is geometrically isomorphic to either $E: y^{2}=x^{3}-x$ or $E: y^{2}=x^{3}+1$. Both are fully maximal.
- Suppose that $p \geq 3$ and $\operatorname{Aut}_{\bar{F}_{p}}(E) \simeq \mathbb{Z} / 2 \mathbb{Z}$. If E is defined over \mathbb{F}_{p}, then it is fully maximal. Otherwise, it is mixed.

Supersingular abelian surfaces

Let A / \mathbb{F}_{q} be a supersingular (unpolarised) abelian surface. Then $P\left(A / \mathbb{F}_{q}, T\right)=T^{4}+a_{1} T^{3}+a_{2} T^{2}+q a_{1} T+q^{2} \in \mathbb{Z}[T]$. Let $\mathbb{F}_{q}=\mathbb{F}_{p^{r}}$. Then A is in one of the following cases.

	$\left(a_{1}, a_{2}\right)$	Conditions on r and p	NWN/ \mathbb{F}_{q}	Parity
1a	$(0,0)$	r odd, $p \equiv 3 \mathrm{mod} 4$ or r even, $p \not \equiv 1 \bmod 4$	$\left\{\zeta_{8}, \zeta_{8}^{7}, \zeta_{8}^{3}, \zeta_{8}^{5}\right\}$	1
1b	$(0,0)$	r odd, $p \equiv 1 \bmod 4$ or r even, $p \equiv 5 \bmod 8$	$\left\{\zeta_{8}, \zeta_{8}^{7}, \zeta_{8}^{3}, \zeta_{8}^{5}\right\}$	1
2a	$(0, q)$	r odd, $p \not \equiv 1 \bmod 3$	$\left\{\zeta_{6}, \zeta_{6}^{5}, \zeta_{6}^{2}, \zeta_{6}^{4}\right\}$	-1
2b	$(0, q)$	r odd, $p \equiv 1 \bmod 3$	$\left\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right\}$	1
3 a	$(0,-q)$	r odd and $p \neq 3$ or r even and $p \not \equiv 1 \bmod 3$	$\left\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right\}$	1
3b	$(0,-q)$	r odd \& $p \equiv 1 \bmod 3$ or r even \& $p \equiv 4,7,10 \bmod 12$	$\left\{\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right\}$	1
4a	(\sqrt{q}, q)	r even and $p \not \equiv 1 \bmod 5$	$\left\{\zeta_{5}, \zeta_{5}^{4}, \zeta_{5}^{2}, \zeta_{5}^{3}\right\}$	-1
4b	$(-\sqrt{q}, q)$	r even and $p \not \equiv 1 \bmod 5$	$\left\{\zeta_{10}, \zeta_{10}^{9}, \zeta_{10}^{3}, \zeta_{10}^{7}\right\}$	1
5a	$(\sqrt{5 q}, 3 q)$	r odd and $p=5$	$\left\{\zeta_{10}^{3}, \zeta_{10}^{7}, \zeta_{5}^{2}, \zeta_{5}^{3}\right\}$	-1
5b	$(-\sqrt{5 q}, 3 q)$	r odd and $p=5$	$\left\{\zeta_{10}, \zeta_{10}^{9}, \zeta_{5}, \zeta_{5}^{4}\right\}$	-1
6a	$(\sqrt{2 q}, q)$	r odd and $p=2$	$\left\{\zeta_{24}^{13}, \zeta_{24}^{11}, \zeta_{24}^{19}, \zeta_{24}^{5}\right\}$	1
6b	$(-\sqrt{2 q}, q)$	r odd and $p=2$	$\left\{\zeta_{24}, \zeta_{24}^{23}, \zeta_{24}^{7}, \zeta_{24}^{17}\right\}$	1
7a	$(0,-2 q)$	r odd	$\{1,1,-1-1\}$	-1
7b	$(0,2 q)$	r even and $p \equiv 1 \bmod 4$	$\{i,-i, i,-i\}$	1
8a	$(2 \sqrt{q}, 3 q)$	r even and $p \equiv 1 \bmod 3$	$\left\{\zeta_{3}, \zeta_{3}^{2}, \zeta_{3}, \zeta_{3}^{2}\right\}$	-1
8b	$(-2 \sqrt{q}, 3 q)$	r even and $p \equiv 1 \bmod 3$	$\left\{\zeta_{6}, \zeta_{6}^{5}, \zeta_{6}, \zeta_{6}^{5}\right\}$	1

Supersingular abelian surfaces

If we assume that $\operatorname{Aut}_{\overline{\mathbb{F}}_{p}}(A) \simeq \mathbb{Z} / 2 \mathbb{Z}$, the table implies:

- If r is odd, then A is not mixed.

There are 6 fully maximal and 4 fully minimal cases.

- If r is even, then A is not fully minimal.

There are 4 fully maximal and 4 mixed cases.
This assumption is not restrictive:

Proposition

If $p \geq 3$, the proportion of $\mathbb{F}_{p^{r} \text {-points }}$ in $\mathcal{A}_{2, \text { ss }}$ which represent A with $\operatorname{Aut}_{\overline{\mathbb{F}}_{p}}(A) \nsucceq \mathbb{Z} / 2 \mathbb{Z}$ tends to zero as $r \rightarrow \infty$.

Thank you for your attention!

