Setup	Results	Transvection	Irr. char. poly.
00000	00	00	0000

The inverse Galois problem for symplectic groups

Valentijn Karemaker (University of Pennsylvania)

Joint with S. Arias-de-Reyna, C. Armana, M. Rebolledo, L. Thomas and N. Vila Joint Mathematics Meetings, Atlanta

January 7, 2017

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Setup	Results	Transvection	Irr. char. poly.
0000	00	00	0000
Inverse (12	lois Problem (1G		

The IGP asks:

- Hilbert (1897): S_n , A_n for all n
- Shafarevich (1954): All finite solvable groups

Galois representations may answer IGP for finite linear groups.

Goal

Obtain realisations of $\mathrm{GSp}(6,\mathbb{F}_\ell)$ as a Galois group over $\mathbb{Q}.$

We consider Galois representations attached to abelian varieties.

Setup	Results	Transvection	Irr. char. poly.
Abelian varieties	5		

Let A/\mathbb{Q} be a principally polarised abelian variety of dimension g.

 $A(\overline{\mathbb{Q}})$ is a group. Let ℓ be a prime. Torsion points $A[\ell] := \{P \in A(\overline{\mathbb{Q}}) : [\ell]P = 0\} \cong (\mathbb{Z}/\ell\mathbb{Z})^{2g}$. $G_{\mathbb{Q}}$ acts on $A[\ell]$, yielding a Galois representation

$$\rho_{\mathcal{A},\ell}: \mathcal{G}_{\mathbb{Q}} \to \mathcal{GL}(\mathcal{A}[\ell]) \cong \mathrm{GL}(2g, \mathbb{F}_{\ell}).$$

The action is compatible with the (symplectic) Weil pairing, hence

$$\rho_{\mathcal{A},\ell}: \mathcal{G}_{\mathbb{Q}} \to \mathrm{GSp}(\mathcal{A}[\ell], \langle \cdot, \cdot \rangle) \cong \mathrm{GSp}(2g, \mathbb{F}_{\ell}).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Surjective $\rho_{A,\ell}$ solve IGP for general symplectic groups.

Setup	Results	Transvection	Irr. char. poly.
00000	00	00	0000
Surjective $\rho_{A\ell}$			

The image of $\rho_{A,\ell}$ in $GSp(2g, \mathbb{F}_{\ell})$ depends on A and ℓ .

Let g = 3. We ask the following questions:

- Given a principally polarised abelian variety A/Q, for which primes *l* is ρ_{A,l} surjective?
- **②** Given a prime ℓ , how do we construct an abelian variety A/\mathbb{Q} such that $\rho_{A,\ell}$ is surjective?

We answer Question 1 in our WIN-E Proceedings paper:

Theorem 1 (AdR-A-K-R-T-V)

For a suitable principally polarised given A/\mathbb{Q} , there is a numerical algorithm which realises $\mathrm{GSp}(6, \mathbb{F}_{\ell})$ as the image of $\rho_{A,\ell}$ for an explicit list of prime numbers ℓ .

In this talk, we explain our solution to Question 2.

 Setup
 Results
 Transvection
 Irr. char. poly.

 000
 00
 00
 0000

Sufficient condition for surjectivity of $\rho_{A,\ell}$

Proposition

If $\operatorname{Im}(\rho_{A,\ell}) \supset \operatorname{Sp}(A[\ell], \langle \cdot, \cdot \rangle)$ then $\operatorname{Im}(\rho_{A,\ell}) = \operatorname{GSp}(A[\ell], \langle \cdot, \cdot \rangle).$

 PROOF : We have an exact sequence

$$1 \to \operatorname{Sp}(\boldsymbol{A}[\ell], \langle \cdot, \cdot \rangle) \to \operatorname{GSp}(\boldsymbol{A}[\ell], \langle \cdot, \cdot \rangle) \xrightarrow{\boldsymbol{m}} \mathbb{F}_{\ell}^{\times} \to 1$$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

where $m : A \mapsto a$ when $\langle Av_1, Av_2 \rangle = a \langle v_1, v_2 \rangle$ for all $v_1, v_2 \in A[\ell]$. $G_{\mathbb{Q}}$ acts such that $m|_{\mathrm{Im}(\rho_{A,\ell})} = \chi_{\ell}$, the **surjective** mod ℓ cyclotomic character. \Box

Let V be a finite-dimensional vector space over \mathbb{F}_{ℓ} , endowed with a symplectic pairing $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}_{\ell}$.

A transvection is an element $T \in GSp(V, \langle \cdot, \cdot \rangle)$ which fixes a hyperplane $H \subset V$.

Theorem (Arias-de-Reyna & Kappen, 2013)

Let $\ell \geq 5$ and let $G \subset GSp(V, \langle \cdot, \cdot \rangle)$ be a subgroup containing both a non-trivial transvection and an element of non-zero trace whose characteristic polynomial is irreducible. Then $G \supset Sp(V, \langle \cdot, \cdot \rangle)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Setup	Results	Transvection	Irr. char. poly.
Main result			

Theorem 2 (AdR-A-K-R-T-V)

Let $\ell \geq 13$ be a prime number. There is a family of projective genus 3 curves C/\mathbb{Q} for which

 $\operatorname{Im}(\rho_{\operatorname{Jac}(\mathcal{C}),\ell}) = \operatorname{GSp}(6,\mathbb{F}_{\ell}).$

Namely, for any distinct odd primes $p, q \neq \ell$ with $q > 1.82\ell^2$, there exist $f_p \in \mathbb{F}_p[x, y]$ and $f_q \in \mathbb{F}_q[x, y]$ such that any $f \in \mathbb{Z}[x, y]$ satisfying

 $f \equiv f_q \pmod{q}$ and $f \equiv f_p \pmod{p^3}$,

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

defines such a curve C/\mathbb{Q} : f(x, y) = 0.

Setup	Results	Transvection	Irr. char. poly.
00000	0	00	0000
NA 1 1			
Wain idea	s for Theorem 2		

p and q are auxiliary primes.

 C_p/\mathbb{F}_p : $f_p(x, y) = 0$ yields a transvection,

 C_q/\mathbb{F}_q : $f_q(x, y) = 0$ yields an element of irreducible characteristic polynomial and non-zero trace.

Simultaneously (Chinese remainder theorem) lift f_p and f_q to f/\mathbb{Z} .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 C/\mathbb{Q} : f(x, y) = 0 is such that Jac(C) has surjective $\rho_{Jac(C),\ell}$.

Setup	Results	Transvection	Irr. char. poly.
00000	00	•0	0000

Finding transvections: Hall's condition

Proposition (Hall, 2011)

Let A/\mathbb{Q} be a principally polarised *g*-dimensional abelian variety. If the Néron model of A/\mathbb{Z} has a semistable fibre at *p* with toric dimension 1, and if $p \nmid \ell$ and $\ell \nmid |\Phi_p|$, then $\operatorname{Im}(\rho_{A,\ell})$ contains a transvection *T*.

We may take T to be the image of a generator of the inertia subgroup of any prime in $\mathbb{Q}(A[\ell])$ lying above p.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Setup	Results	Transvection	Irr. char. poly.
00000	00	00	0000
Finding tra	insvections.	Explicit models	
i munig tid			

Let
$$f_p(x, y) \in \mathbb{Z}_p[x, y]$$
 be one of the following:
(H) $y^2 - x(x - p)m(x)$,
 $m(x) \in \mathbb{Z}_p[x]$ of degree 5 or 6 with simple $\neq 0$ roots mod p ;
(Q) $x^4 + y^4 + x^2 - y^2 + px$.
Then C/\mathbb{Q} : $f(x, y) = 0$ is a smooth projective geometrically.

Then C_p/\mathbb{Q}_p : $f_p(x, y) = 0$ is a smooth projective geometrically connected genus 3 curve.

It has a semistable fibre at p with one ordinary node of thickness 2. Hence $|\Phi_p| = 2$.

Toric dimension = rank of $H^1(\Gamma(C_{\overline{\mathbb{F}}_p}), \mathbb{Z}) = 1$.

Hall's result implies: For 2, p, ℓ distinct primes, $\text{Im}(\rho_{\text{Jac}(C_p),\ell})$ contains a transvection.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Setup	Results	Transvection	Irr. char. poly.
00000	00	00	0000

Finding irr. characteristic polynomial of non-zero trace

Theorem 3 (AdR-A-K-R-T-V)

Let $\ell \geq 13$ be a prime number. For each prime $q > 1.82\ell^2$, there exist a smooth geometrically connected curve C_q/\mathbb{F}_q of genus 3, whose Jacobian $\operatorname{Jac}(C_q)$ is a 3-dimensional ordinary absolutely simple abelian variety over \mathbb{Q} such that the characteristic polynomial of its Frobenius endomorphism is irreducible moulo ℓ and has non-zero trace.

Setup	Results	Transvection	Irr. char. poly.
00000	00	00	○●○○
Weil <i>q</i> -pol	ynomials		

Fix a prime ℓ .

A Weil *q*-polynomial is a monic polynomial $P_q \in \mathbb{Z}[t]$ of even degree, whose complex roots all have absolute value \sqrt{q} .

Any degree 6 Weil q-polynomial will look like

$$P_q(t) = t^6 + at^5 + bt^4 + ct^3 + qbt^2 + q^2at + q^3.$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Setup	Results	Transvection	Irr. char. poly.
00000	00	00	○○●○
<u>.</u>			

Obtaining an abelian variety

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

590

Setup	Results	Transvection	Irr. char. poly.
00000	00	00	○○○●
End of proof:	existence	of suitable <i>P_a</i>	

Proposition (AdR-A-K-R-T-V)

For any $\ell \geq 13$ and $q > 1.82\ell^2$, there exists such a Weil polynomial $P_q \in \mathbb{Z}[t]$, with $|a|, |b|, |c| < \frac{\ell-1}{2}$.

This proves Theorem 3, hence Theorem 2.

- Arias-de-Reyna, Armana, Karemaker, Rebolledo, Thomas, Vila (2014) Galois representations and symplectic Galois groups over Q Proceedings of Women in Numbers Europe - Research Directions in Number Theory
- Arias-de-Reyna, Armana, Karemaker, Rebolledo, Thomas, Vila (2016)
 Large Galois images for Jacobian varieties of genus 3 curves
 Acta Arithmetica 174(4), 339 366.

Thank you for your attention!