Mass formulae for supersingular abelian threefolds

Valentijn Karemaker

(Utrecht University \& Stockholm University)

Joint work with F. Yobuko and C.-F. Yu

$$
N^{3} \text { days XII }
$$

May 28, 2020

What is a mass (formula)?

Definition

Let S be a finite set of objects with finite automorphism groups. The mass of S is the weighted sum

$$
\operatorname{Mass}(S)=\sum_{s \in S} \frac{1}{|\operatorname{Aut}(s)|}
$$

A mass formula computes an expression for the mass.

Examples of mass formulae

Minkowski-Siegel mass formula

Let $S=\{$ even unimodular lattices of dimension $8 k\} / \simeq$.
Then for $k>0$,

$$
\operatorname{Mass}(S)=\sum_{s \in S} \frac{1}{|\operatorname{Aut}(s)|}=\frac{\left|B_{4 k}\right|}{8 k} \prod_{j=1}^{4 k-1} \frac{\left|B_{2 k}\right|}{4 j}
$$

Eichler-Deuring mass formula
Let $S=\left\{\right.$ supersingular elliptic curves over $\left.\overline{\mathbb{F}}_{p}\right\} / \simeq$. Then

$$
\operatorname{Mass}(S)=\sum_{s \in S} \frac{1}{|\operatorname{Aut}(s)|}=\frac{p-1}{24}
$$

What set are we computing the mass of?

Let k be an algebraically closed field of characteristic p.
Let X / k be a three-dimensional abelian variety.
X / k is SUPERSINGULAR (resp. SUPERSPECIAL) if it is isogenous (resp. isomorphic) to a product of supersingular elliptic curves.

Let $\mathcal{S}_{3,1}$ be the moduli space of principally polarised supersingular abelian threefolds (X, λ).

For all primes $\ell \neq p$, we have $T_{\ell}(X)=X\left[\ell^{\infty}\right] \simeq \mathbb{Z}_{\ell}^{6}$.
Definition
For $x=\left(X_{0}, \lambda_{0}\right) \in \mathcal{S}_{3,1}(k)$, let

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{3,1}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\}
$$

What set are we computing the mass of?

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{3,1}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\} .
$$

It is known that Λ_{x} is finite [Yu].

Goal

Compute $\operatorname{Mass}\left(\Lambda_{x}\right)=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1}$ for any $x \in \mathcal{S}_{3,1}$.
For $x=\left(X_{0}, \lambda_{0}\right) \in S_{3,1}(k)$, let G_{x} / \mathbb{Z} be the automorphism group scheme such that for any commutative ring R,

$$
G_{x}(R)=\left\{h \in\left(\operatorname{End}\left(X_{0}\right) \otimes_{\mathbb{Z}} R\right)^{\times}: h^{\prime} h=1\right\} .
$$

Then there is a bijection

$$
\Lambda_{x} \simeq G_{x}(\mathbb{Q}) \backslash G_{x}\left(\mathbb{A}_{f}\right) / G_{x}(\widehat{\mathbb{Z}}),
$$

$$
\operatorname{Mass}\left(\Lambda_{x}\right)=\operatorname{vol}\left(G_{x}(\mathbb{Q}) \backslash G_{x}\left(\mathbb{A}_{f}\right)\right)=\operatorname{Mass}\left(G_{x}, G_{x}(\widehat{\mathbb{Z}})\right)
$$

How do we describe $\mathcal{S}_{3,1}$?

Let $E / \mathbb{F}_{p^{2}}$ be a supersingular elliptic curve with $\pi_{E}=-p$. Let μ be any principal polarisation of E^{3}.

Definition

A polarised flag type quotient (PFTQ) with respect то μ is a chain

$$
\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)
$$

such that $\operatorname{ker}\left(\rho_{1}\right) \simeq \alpha_{p}, \operatorname{ker}\left(\rho_{2}\right) \simeq \alpha_{p}^{2}$, and $\operatorname{ker}\left(\lambda_{i}\right) \subseteq \operatorname{ker}\left(V^{j} \circ F^{i-j}\right)$ for $0 \leq i \leq 2$ and $0 \leq j \leq\lfloor i / 2\rfloor$.

Let \mathcal{P}_{μ} be the moduli space of PFTQ's.
It is a two-dimensional geometrically irreducible scheme over $\mathbb{F}_{p^{2}}$.

How do we describe $\mathcal{S}_{3,1}$?

An PFTQ w.r.t. μ is $\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)$.
It follows that $\left(Y_{0}, \lambda_{0}\right) \in \mathcal{S}_{3,1}$, so there is a projection map

$$
\begin{aligned}
\mathrm{pr}_{0}: \mathcal{P}_{\mu} & \rightarrow \mathcal{S}_{3,1} \\
\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right) & \mapsto\left(Y_{0}, \lambda_{0}\right)
\end{aligned}
$$

such that $\prod_{\mu} \mathcal{P}_{\mu} \rightarrow \mathcal{S}_{3,1}$ is surjective and generically finite.

Slogan

Each \mathcal{P}_{μ} approximates a geom. irreducible component of $\mathcal{S}_{3,1}$.

How do we describe \mathcal{P}_{μ} ?

Let $C: t_{1}^{p+1}+t_{2}^{p+1}+t_{3}^{p+1}=0$ be a Fermat curve in \mathbb{P}^{2}. It has genus $p(p-1) / 2$ and admits a left action by $U_{3}\left(\mathbb{F}_{p}\right)$.

Then $\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C$ is a \mathbb{P}^{1}-bundle. There is a section $s: C \rightarrow T \subseteq \mathcal{P}_{\mu}$.

Upshot

For each (X, λ) there exist a μ and a $y \in \mathcal{P}_{\mu}$ such that $\operatorname{pr}_{0}(y)=[(X, \lambda)]$.
This y is uniquely characterised by a pair (t, u) with $t=\left(t_{1}: t_{2}: t_{3}\right) \in C(k)$ and $u=\left(u_{1}: u_{2}\right) \in \pi^{-1}(t) \simeq \mathbb{P}_{t}^{1}(k)$.

The structure of \mathcal{P}_{μ}

$$
\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C \text { has section } s: C \rightarrow T \subseteq \mathcal{P}_{\mu}
$$

Definition

Let X / k be an abelian variety. Its a-NUMBER is

$$
a(X):=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)
$$

For a PFTQ $y=\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right)$, we say $a(y)=a\left(Y_{0}\right)$.

- For a threefold X we have $a(X) \in\{1,2,3\}$, and $a(X)=3 \Leftrightarrow X$ is superspecial.
- If $y \in T$, then $a(y)=3$.
- For $t \in C(k)$, we have $t \in C\left(\mathbb{F}_{p^{2}}\right) \Leftrightarrow a(y) \geq 2$ for any $y \in \pi^{-1}(t)$.
- For $y \in \mathcal{P}_{\mu}$, we have $a(y)=1 \Leftrightarrow y \notin T$ and $\pi(y) \notin C\left(\mathbb{F}_{p^{2}}\right)$.

The structure of \mathcal{P}_{μ} : a picture

$C\left(F_{p^{2}}\right)$

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a minimal isogeny

$$
\varphi: Y \rightarrow X
$$

from a superspecial abelian variety Y.

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

$$
Y_{2} \xrightarrow{\rho_{2}} Y_{1} \xrightarrow{\rho_{1}} Y_{0}=X .
$$

(If $Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}$ is a PFTQ, then Y_{2} is superspecial!)

- If $a(X)=3$ then X is superspecial and $\varphi=\mathrm{id}$.
- If $a(X)=2$, then $a\left(Y_{1}\right)=3$ and $\varphi=\rho_{1}$ of degree p.
- If $a(X)=1$, then $\varphi=\rho_{1} \circ \rho_{2}$ of degree p^{3}.

From minimal isogenies to masses

Let $x=(X, \lambda)$ be supersingular and $\varphi: Y \rightarrow X$ a minimal isogeny. Write $\tilde{x}=\left(Y, \varphi^{*} \lambda\right)$.

Through φ, we may view both $G_{\tilde{x}}(\widehat{\mathbb{Z}})$ and $\varphi^{*} G_{x}(\widehat{\mathbb{Z}})$ as open compact subgroups of $G_{\tilde{x}}\left(\mathbb{A}_{f}\right)$, which differ only at p. Hence:

Lemma

$$
\begin{aligned}
\operatorname{Mass}\left(\Lambda_{x}\right) & =\frac{\left[G_{\tilde{x}}(\widehat{\mathbb{Z}}): G_{\tilde{x}}(\widehat{\mathbb{Z}}) \cap \varphi^{*} G_{x}(\widehat{\mathbb{Z}})\right]}{\left[\varphi^{*} G_{x}(\widehat{\mathbb{Z}}): G_{\tilde{x}}(\widehat{\mathbb{Z}}) \cap \varphi^{*} G_{x}(\widehat{\mathbb{Z}})\right]} \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right) \\
& =\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right] \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right)
\end{aligned}
$$

So we can compare any supersingular mass to a superspecial mass.

From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!
Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]
Let $\tilde{x}=(Y, \lambda)$ be a superspecial abelian threefold.

- If λ is a principal polarisation, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{x}}\right)=\frac{(p-1)\left(p^{2}+1\right)\left(p^{3}-1\right)}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7}
$$

- If $\operatorname{ker}(\lambda) \simeq \alpha_{p} \times \alpha_{p}$, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{\chi}}\right)=\frac{(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)}{2^{10 \cdot 3^{4} \cdot 5 \cdot 7}} .
$$

It remains to compute $\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.

The main tool: Dieudonné modules

Let $W=W(k)$ be the ring of W itt vectors over k.
Let σ be the Frobenius acting on W.

Definition (Dieudonné module)

A Dieudonné module over k is a finite W-module M, with a σ-linear operator F and a σ^{-1}-linear operator V such that

$$
F V=V F=p
$$

There is an antiequivalence
$\{p$-divisible groups $/ k\} \leftrightarrow\{W$-free Dieudonné modules $/ k\}$.
Let A be an abelian variety over k. Instead of $A\left[p^{\infty}\right]$, we study its Dieudonné module $M=M\left(A\left[p^{\infty}\right]\right)$.

The case $a(X)=2$

Let $x=(X, \lambda) \in \mathcal{S}_{3,1}$ such that $a(X)=2$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair
$t \in C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right)$.
The minimal isogeny is $\varphi=\rho_{1}: Y_{1} \rightarrow X$.
So we need to compute $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
Write $M_{1}=M\left(Y_{1}\left[p^{\infty}\right]\right)$ and $M=M\left(X\left[p^{\infty}\right]\right)$.
Then equivalently we need to compute $\left[\operatorname{Aut}\left(M_{1}\right): \operatorname{Aut}(M)\right]$.
Let $M_{1}^{\diamond}:=\left\{m \in M_{1}: F m+V m=0\right\}$ be the Skeleton of M_{1}. Then $V=M_{1}^{\diamond} / M_{1}^{\diamond, t}$ is an $\mathbb{F}_{p^{2} \text {-vector space. }}$
We have (reduction) maps

$$
\operatorname{Aut}\left(M_{1}\right)=\operatorname{Aut}\left(M_{1}^{\diamond}\right) \xrightarrow{m} \operatorname{Aut}_{\mathbb{F}_{p^{2}}}(V)=\mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right)
$$

The case $a(X)=2$

We further have

$$
\operatorname{Aut}(M) \xrightarrow{m} \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times},
$$

where

$$
\operatorname{End}(u)=\left\{g \in M_{2}\left(\mathbb{F}_{p^{2}}\right): g \cdot u \subseteq k \cdot u\right\} \simeq\left\{\begin{array}{l}
\mathbb{F}_{p^{4}} \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) \\
\mathbb{F}_{p^{2}} \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right)
\end{array}\right.
$$

So $\left[\operatorname{Aut}\left(M_{1}\right): \operatorname{Aut}(M)\right]=$

$$
\begin{aligned}
& {\left[\mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right): \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times}\right]=} \\
& \begin{cases}p^{2}\left(p^{2}-1\right) & \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\
\left|\mathrm{PSL}_{2}\left(\mathbb{F}_{p^{2}}\right)\right| & \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}
\end{aligned}
$$

The case $a(X)=2$

Theorem (K.-Yobuko-Yu)

Let $x=(X, \lambda) \in \mathcal{S}_{3,1}$ such that $a(X)=2$, whose PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right)$.
Write $x_{1}=\left(Y_{1}, \lambda_{1}\right), M_{1}=M\left(Y_{1}\left[p^{\infty}\right]\right)$, and $M=M\left(X\left[p^{\infty}\right]\right)$.
Let $e(p)=0$ if $p=2$ and $e(p)=1$ if $p>2$.
$\operatorname{Mass}\left(\Lambda_{x}\right)=\operatorname{Mass}\left(\Lambda_{x_{1}}\right) \cdot\left[\operatorname{Aut}\left(M_{1}\right): \operatorname{Aut}(M)\right]$

$$
\begin{aligned}
& =\frac{1}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} . \\
& \begin{cases}(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)\left(p^{4}-p^{2}\right) & : u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\
2^{-e(p)}(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right) p^{2}\left(p^{4}-1\right) & : u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}
\end{aligned}
$$

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3,1}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.

We need to compute $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
Write $M_{2}=M\left(Y_{2}\left[p^{\infty}\right]\right)$ and $M=M\left(X\left[p^{\infty}\right]\right)$.
Then equivalently we need to compute $\left[\operatorname{Aut}\left(M_{2}\right): \operatorname{Aut}(M)\right]$.
Let $D_{p}=\mathbb{Q}_{p^{2}}[\Pi]$ be the division quaternion algebra over \mathbb{Q}_{p}, and let $\mathcal{O}_{D_{\rho}}$ its maximal order. (We have $\Pi^{2}=-p$.) Then

$$
\begin{aligned}
\operatorname{Aut}\left(M_{2}\right) & \simeq\left\{A \in \mathrm{GL}_{3}\left(\mathcal{O}_{D_{p}}\right): A^{*} A=\mathbb{I}_{3}\right\} \\
\operatorname{Aut}(M) & \simeq\left\{g \in \operatorname{Aut}\left(M_{2}\right): g(M)=M\right\}
\end{aligned}
$$

The case $a(X)=1$

Let m_{p} be the reduction-modulo- $p M_{2}$ map. We obtain

$$
\begin{aligned}
\bar{G}_{2} & =m_{p}\left(\operatorname{Aut}\left(M_{2}\right)\right) \\
& =\left\{A+B \Pi \in \mathrm{GL}_{3}\left(\mathbb{F}_{p^{2}}[\Pi]\right): A^{*} A=\mathbb{I}_{3}, B^{T} A^{*}=A^{* T} B\right\} ; \\
\bar{G} & =m_{p}(\operatorname{Aut}(M)) \\
& =\left\{g \in \bar{G}_{2}: g\left(M / p M_{2}\right) \subseteq M / p M_{2}\right\} .
\end{aligned}
$$

We see that

$$
\left|\bar{G}_{2}\right|=\left|U_{3}\left(\mathbb{F}_{p}\right)\right| \cdot\left|S_{3}\left(\mathbb{F}_{p^{2}}\right)\right|=p^{15}(p+1)\left(p^{2}-1\right)\left(p^{3}+1\right) .
$$

Moreover,

$$
\left[\operatorname{Aut}\left(M_{2}\right): \operatorname{Aut}(M)\right]=\left[\bar{G}_{2}: \bar{G}\right] .
$$

The case $a(X)=1$

We prove that

$$
\begin{aligned}
\bar{G} \simeq\left\{\left(\begin{array}{cc}
A & 0 \\
S A & A^{(p)}
\end{array}\right):\right. & : A \in U_{3}\left(\mathbb{F}_{p}\right), A \cdot t=\alpha \cdot t, \\
& \left.S \in S_{3}\left(\mathbb{F}_{p^{2}}\right), \psi_{t}(S)=u_{2} u_{1}^{-1}\left(1-\alpha^{p^{3}-1}\right)\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
\psi_{t}: S_{3}\left(\mathbb{F}_{p^{2}}\right) & \rightarrow k \\
S & \mapsto \text { the }(1,1) \text {-component of } \mathbb{T}^{-1} S \mathbb{T}, \\
\text { for } \mathbb{T} & =\left(\begin{array}{ccc}
t_{1} & t_{1}^{p} & t_{1}^{p^{-1}} \\
t_{2} & t_{2}^{p} & t_{2}^{p^{-1}} \\
t_{3} & t_{3}^{p} & t_{3}^{p^{-1}}
\end{array}\right)
\end{aligned}
$$

is a homomorphism depending on t. So
$|\bar{G}|=\left|\left\{A \in U_{3}\left(\mathbb{F}_{p}\right): A \cdot t=\alpha \cdot t, u_{2} u_{1}^{-1}\left(1-\alpha^{p^{3}-1}\right) \in \operatorname{Im}\left(\psi_{t}\right)\right\}\right| \cdot\left|\operatorname{ker}\left(\psi_{t}\right)\right|$.

The case $a(X)=1$

The images of ψ_{t} for varying t define a divisor $D \subseteq C^{0} \times \mathbb{P}^{1}$:

$$
D=\sum_{S \in S_{3}\left(\mathbb{F}_{p^{2}}\right)}\left\{\left(t^{(p)},\left(1: \psi_{t}(S)^{p}\right)\right): t \in C^{0}\right\}
$$

For $t \in C^{0}(k)$, let $d(t)=\operatorname{dim}_{\mathbb{F}_{p^{2}}}\left(\operatorname{Im}\left(\psi_{t}\right)\right)$ and $D_{t}=\pi^{-1}(t) \cap D$.
Then $u=\left(u_{1}: u_{2}\right) \in D_{t} \Leftrightarrow u_{2} u_{1}^{-1} \in \operatorname{Im}\left(\psi_{t}\right)$.
Also, $\left|\operatorname{ker}\left(\psi_{t}\right)\right|=p^{2(6-d(t))}$. Hence,

$$
|\bar{G}|= \begin{cases}2^{e(p)} p^{2(6-d(t))} & \text { if } u \notin D_{t} ; \\ (p+1) p^{2(6-d(t))} & \text { if } u \in D_{t} \text { and } t \notin C\left(\mathbb{F}_{p^{6}}\right) ; \\ \left(p^{3}+1\right) p^{6} & \text { if } u \in D_{t} \text { and } t \in C\left(\mathbb{F}_{p^{6}}\right),\end{cases}
$$

where $e(p)=0$ if $p=2$ and $e(p)=1$ if $p>2$.

The case $a(X)=1$

Theorem (K.-Yobuko-Yu)

Let $x=(X, \lambda) \in \mathcal{S}_{3,1}$ such that $a(X)=1$, whose PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
Write $x_{2}=\left(Y_{2}, \lambda_{2}\right), M_{2}=M\left(Y_{2}\left[p^{\infty}\right]\right)$, and $M=M\left(X\left[p^{\infty}\right]\right)$.
Let $e(p)=0$ if $p=2$ and $e(p)=1$ if $p>2$.
$\operatorname{Mass}\left(\Lambda_{x}\right)=\operatorname{Mass}\left(\Lambda_{x_{2}}\right) \cdot\left[\operatorname{Aut}\left(M_{2}\right): \operatorname{Aut}(M)\right]$

$$
=\frac{p^{3}}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} .
$$

$$
\begin{cases}2^{-e(p)} p^{2 d(t)}\left(p^{2}-1\right)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \notin D_{t} ; \\ p^{2 d(t)}(p-1)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \in D_{t}, t \notin C\left(\mathbb{F}_{p^{6}}\right) ; \\ p^{6}\left(p^{2}-1\right)\left(p^{3}-1\right)\left(p^{4}-1\right) & : u \in D_{t}, t \in C\left(\mathbb{F}_{p^{6}}\right)\end{cases}
$$

What else can we use all these computations for?

Application: Oort's conjecture

Oort's conjecture

Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_{2} \simeq\{ \pm 1\}$.

This fails in general: counterexamples for $(g, p)=(2,2)$ and $(3,2)$.

Theorem (K.-Yobuko-Yu)

When $g=3$, Oort's conjecture holds precisely when $p \neq 2$.

- A generic threefold X has $a(X)=1$. Its PFTQ is characterised by $t \in C^{0}(k)$ and $u \notin D_{t}$.
- Our computations show for such (X, λ) that

$$
\operatorname{Aut}((X, \lambda)) \simeq \begin{cases}C_{2}^{3} & \text { for } p=2 \\ C_{2} & \text { for } p \neq 2\end{cases}
$$

