Mass formula for supersingular abelian threefolds

Valentijn Karemaker
(Utrecht University \& Stockholm University)

Joint work with F. Yobuko and C.-F. Yu
WAGON
April 19, 2020

What is a mass (formula)?

Definition

Let S be a finite set of objects with finite automorphism groups. The mass of S is the weighted sum

$$
\operatorname{Mass}(S)=\sum_{s \in S} \frac{1}{|\operatorname{Aut}(s)|}
$$

A mass formula computes an expression for the mass.

What mass formula are we looking for?

Let k be an algebraically closed field of characteristic p.
Let A / k be a three-dimensional abelian variety.
A / k is SUPERSINGULAR (resp. SUPERSPECIAL) if it is isogenous (resp. isomorphic) to a product of supersingular elliptic curves. Let $\mathcal{S}_{3,1}$ be the moduli space of principally polarised supersingular abelian threefolds (X, λ).

Definition

For $x=\left(X_{0}, \lambda_{0}\right) \in \mathcal{S}_{3,1}(k)$, let

$$
\Lambda_{x}=\left\{(X, \lambda) \in \mathcal{S}_{3,1}(k):(X, \lambda)\left[p^{\infty}\right] \simeq\left(X_{0}, \lambda_{0}\right)\left[p^{\infty}\right]\right\}
$$

It is known that Λ_{x} is finite.

Goal

Compute $\operatorname{Mass}\left(\Lambda_{x}\right)=\sum_{x^{\prime} \in \Lambda_{x}}\left|\operatorname{Aut}\left(x^{\prime}\right)\right|^{-1}$ for any $x \in \mathcal{S}_{3,1}$.

How do we describe $\mathcal{S}_{3,1}$?

Let $E / \mathbb{F}_{p^{2}}$ be a supersingular elliptic curve with $\pi_{E}=-p$. Let μ be any principal polarisation of E^{3}.

Definition

A polarised flag type quotient (PFTQ) with respect TO μ is a chain

$$
\left(E^{3}, p \mu\right)=:\left(Y_{2}, \lambda_{2}\right) \xrightarrow{\rho_{2}}\left(Y_{1}, \lambda_{1}\right) \xrightarrow{\rho_{1}}\left(Y_{0}, \lambda_{0}\right)
$$

such that $\operatorname{ker}\left(\rho_{1}\right) \simeq \alpha_{p}, \operatorname{ker}\left(\rho_{2}\right) \simeq \alpha_{p}^{2}$, and $\operatorname{ker}\left(\lambda_{i}\right) \subseteq \operatorname{ker}\left(V^{j} \circ F^{i-j}\right)$ for $0 \leq i \leq 2$ and $0 \leq j \leq\lfloor i / 2\rfloor$.
Let \mathcal{P}_{μ} be the moduli space of PFTQ's.
It follows that $\left(Y_{0}, \lambda_{0}\right) \in \mathcal{S}_{3,1}$, so there is a projection map

$$
\begin{aligned}
\operatorname{pr}_{0}: \mathcal{P}_{\mu} & \rightarrow \mathcal{S}_{3,1} \\
\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right) & \mapsto\left(Y_{0}, \lambda_{0}\right)
\end{aligned}
$$

How do we describe \mathcal{P}_{μ} ?

Let $C: t_{1}^{p+1}+t_{2}^{p+1}+t_{3}^{p+1}=0$ be a Fermat curve in \mathbb{P}^{2}.
Then $\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C$ is a \mathbb{P}^{1}-bundle. There is a section $s: C \rightarrow T \subseteq \mathcal{P}_{\mu}$,

Upshot

For each (X, λ) there exist a μ and a $y \in \mathcal{P}_{\mu}$ such that $\operatorname{pr}_{0}(y)=[(X, \lambda)]$.
This y is uniquely characterised by a pair (t, u) with
$t=\left(t_{1}: t_{2}: t_{3}\right) \in C(k)$ and $u=\left(u_{1}: u_{2}\right) \in \pi^{-1}(t) \simeq \mathbb{P}_{t}^{1}(k)$.

The structure of \mathcal{P}_{μ}

$$
\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{C}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \rightarrow C \text { has section } s: C \rightarrow T \subseteq \mathcal{P}_{\mu}
$$

Definition

Let X / k be an abelian variety. Its a-NUMBER is

$$
a(X):=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X\right)
$$

For a PFTQ $y=\left(Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right)$, we say $a(y)=a\left(Y_{0}\right)$.

- For a threefold X we have $a(X) \in\{1,2,3\}$, and $a(X)=3 \Leftrightarrow X$ is superspecial.
- If $y \in T$, then $a(y)=3$.
- For $t \in C(k)$, we have $t \in C\left(\mathbb{F}_{p^{2}}\right) \Leftrightarrow a(y) \geq 2$ for any $y \in \pi^{-1}(t)$.
- For $y \in \mathcal{P}_{\mu}$, we have $a(y)=1 \Leftrightarrow y \notin T$ and $\pi(y) \notin C\left(\mathbb{F}_{p^{2}}\right)$.

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a minimal isogeny

$$
\varphi: Y \rightarrow X
$$

from a superspecial abelian variety Y.

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

$$
Y_{2} \xrightarrow{\rho_{2}} Y_{1} \xrightarrow{\rho_{1}} Y_{0}=X .
$$

(If $Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}$ is a PFTQ, then Y_{2} is superspecial!)

- If $a(X)=3$ then X is superspecial and $\varphi=\mathrm{id}$.
- If $a(X)=2$, then $a\left(Y_{1}\right)=3$ and $\varphi=\rho_{1}$ of degree p.
- If $a(X)=1$, then $\varphi=\rho_{1} \circ \rho_{2}$ of degree p^{3}.

From minimal isogenies to masses

Let $x=(X, \lambda)$ be supersingular and $\varphi: Y \rightarrow X$ a minimal isogeny. Write $\tilde{x}=\left(Y, \varphi^{*} \lambda\right)$.

Lemma

$$
\operatorname{Mass}\left(\Lambda_{x}\right)=\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right] \cdot \operatorname{Mass}\left(\Lambda_{\tilde{x}}\right)
$$

Moreover, the superspecial masses are known in any dimension!
Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]
Let $\tilde{x}=(Y, \lambda)$ be a superspecial abelian threefold.

- If λ is a principal polarisation, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{\chi}}\right)=\frac{(p-1)\left(p^{2}+1\right)\left(p^{3}-1\right)}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} .
$$

- If $\operatorname{ker}(\lambda) \simeq \alpha_{p} \times \alpha_{p}$, then

$$
\operatorname{Mass}\left(\Lambda_{\tilde{\chi}}\right)=\frac{(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} .
$$

It remains to compute $\left[\operatorname{Aut}\left(\left(Y, \phi^{*} \lambda\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.

The case $a(X)=2$

Let $x=(X, \lambda) \in \mathcal{S}_{3,1}$ such that $a(X)=2$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair
$t \in C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
There are reduction maps

$$
\begin{aligned}
\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right) & \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \\
\operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right) & \rightarrow \mathrm{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times},
\end{aligned}
$$

where
$\operatorname{End}(u)=\left\{g \in M_{2}\left(\mathbb{F}_{p^{2}}\right): g \cdot u \subseteq k \cdot u\right\} \simeq\left\{\begin{array}{l}\mathbb{F}_{p^{4}} \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\ \mathbb{F}_{p^{2}} \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{array}\right.$

The case $a(X)=2$

```
Let }x=(X,\lambda)\in\mp@subsup{\mathcal{S}}{3,1}{}\mathrm{ such that }a(X)=2\mathrm{ .
```



```
t\inC(\mp@subsup{\mathbb{F}}{\mp@subsup{p}{}{2}}{})\mathrm{ and }u\in\mp@subsup{\mathbb{P}}{t}{1}(k)\\mp@subsup{\mathbb{P}}{t}{1}(\mp@subsup{\mathbb{F}}{\mp@subsup{p}{}{2}}{})\mathrm{ .}
```

So $\left[\operatorname{Aut}\left(\left(Y_{1}, \lambda_{1}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=$
$\left[\operatorname{SL}_{2}\left(\mathbb{F}_{p^{2}}\right): \operatorname{SL}_{2}\left(\mathbb{F}_{p^{2}}\right) \cap \operatorname{End}(u)^{\times}\right]=$
$\begin{cases}p^{2}\left(p^{2}-1\right) & \text { if } u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\ \left|\operatorname{PSL}_{2}\left(F_{p^{2}}\right)\right| & \text { if } u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}$

Theorem (K.-Yobuko-Yu)

$$
\begin{aligned}
\operatorname{Mass}\left(\Lambda_{x}\right) & =\frac{1}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} . \\
& \begin{cases}(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right)\left(p^{4}-p^{2}\right) & : u \in \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{2}}\right) ; \\
2^{-e(p)}(p-1)\left(p^{3}+1\right)\left(p^{3}-1\right) p^{2}\left(p^{4}-1\right) & : u \in \mathbb{P}_{t}^{1}(k) \backslash \mathbb{P}_{t}^{1}\left(\mathbb{F}_{p^{4}}\right) .\end{cases}
\end{aligned}
$$

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3,1}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
We need to compute $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]$.
Let $D_{p}=\mathbb{Q}_{p^{2}}[\Pi]$ be the division quaternion algebra over \mathbb{Q}_{p}, and let $\mathcal{O}_{D_{p}}$ its maximal order. (We have $\Pi^{2}=-p$.)

- $G_{2}:=\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right) \simeq\left\{A \in \mathrm{GL}_{3}\left(\mathcal{O}_{D_{p}}\right): A^{*} A=\mathbb{I}_{3}\right\}$.
- $\left.G:=\operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=\left\{g \in G_{2}: g\left(X\left[p^{\infty}\right]\right)=X\left[p^{\infty}\right]\right\}$.

Reducing modulo p we obtain \bar{G}_{2} and \bar{G}, where:

- $\bar{G}_{2}=\left\{A+B \Pi \in \mathrm{GL}_{3}\left(\mathbb{F}_{p^{2}}[\Pi]\right): A^{*} A=\mathbb{I}_{3}, B^{T} A^{*}=A^{* T} B\right\}$, so $\left|\bar{G}_{2}\right|=\left|U_{3}\left(\mathbb{F}_{p}\right)\right| \cdot\left|S_{3}\left(\mathbb{F}_{p^{2}}\right)\right|=p^{15}(p+1)\left(p^{2}-1\right)\left(p^{3}+1\right)$;
- $\bar{G}=\left\{g \in \bar{G}_{2}: g\left(\overline{X\left[p^{\infty}\right]}\right) \subseteq \overline{X\left[p^{\infty}\right]}\right\}$.

Moreover,

- $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=\left[G_{2}: G\right]=\left[\bar{G}_{2}: \bar{G}\right]$.

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3,1}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair $t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.
We need $\left[\operatorname{Aut}\left(\left(Y_{2}, \lambda_{2}\right)\left[p^{\infty}\right]\right): \operatorname{Aut}\left((X, \lambda)\left[p^{\infty}\right]\right)\right]=\left[G_{2}: G\right]=\left[\bar{G}_{2}: \bar{G}\right]$.

- $\bar{G} \simeq\left\{\left(\begin{array}{cc}A & 0 \\ S A & A^{(p)}\end{array}\right): A \in U_{3}\left(\mathbb{F}_{p}\right), A \cdot t=\alpha \cdot t\right.$,

$$
\left.S \in S_{3}\left(\mathbb{F}_{p^{2}}\right), \psi_{t}(S)=u_{2} u_{1}^{-1}\left(1-\alpha^{p^{3}-1}\right)\right\},
$$

where $\psi_{t}: S_{3}\left(\mathbb{F}_{p^{2}}\right) \rightarrow k$ is a homomorphism depending on t.
The images of ψ_{t} for varying t define a divisor $D \subseteq C^{0} \times \mathbb{P}^{1}$.
For $t \in C^{0}(k)$, let $d(t)=\operatorname{dim}_{\mathbb{F}_{p^{2}}}\left(\operatorname{Im}\left(\psi_{t}\right)\right)$ and $D_{t}=\pi^{-1}(t) \cap D$.
Then $u=\left(u_{1}: u_{2}\right) \in D_{t} \Leftrightarrow u_{2} u_{1}^{-1} \in \operatorname{Im}\left(\psi_{t}\right)$.

$$
\cdot|\bar{G}|= \begin{cases}2^{e(p)} p^{2(6-d(t))} & \text { if } u \notin D_{t} \\ (p+1) p^{2(6-d(t))} & \text { if } u \in D_{t} \text { and } t \notin C\left(\mathbb{F}_{p^{6}}\right) \\ \left(p^{3}+1\right) p^{6} & \text { if } u \in D_{t} \text { and } t \in C\left(\mathbb{F}_{p^{6}}\right)\end{cases}
$$

The case $a(X)=1$

Let $x=(X, \lambda) \in \mathcal{S}_{3,1}$ such that $a(X)=1$.
Its PFTQ $\left(Y_{2}, \lambda_{2}\right) \rightarrow\left(Y_{1}, \lambda_{1}\right) \rightarrow(X, \lambda)$ is characterised by a pair
$t \in C^{0}(k):=C(k) \backslash C\left(\mathbb{F}_{p^{2}}\right)$ and $u \in \mathbb{P}_{t}^{1}(k)$.

Theorem (K.-Yobuko-Yu)

$$
\begin{aligned}
& \operatorname{Mass}\left(\Lambda_{x}\right)=\frac{p^{3}}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} \\
& \begin{cases}2^{-e(p)} p^{2 d(t)}\left(p^{2}-1\right)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \notin D_{t} ; \\
p^{2 d(t)}(p-1)\left(p^{4}-1\right)\left(p^{6}-1\right) & : u \in D_{t}, t \notin C\left(\mathbb{F}_{p^{6}}\right) ; \\
p^{6}\left(p^{2}-1\right)\left(p^{3}-1\right)\left(p^{4}-1\right) & : u \in D_{t}, t \in C\left(\mathbb{F}_{p^{6}}\right) .\end{cases}
\end{aligned}
$$

Question

What else can we use all these computations for?

Application: Oort's conjecture

Oort's conjecture

Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_{2} \simeq\{ \pm 1\}$.

This fails in general: counterexamples for $(g, p)=(2,2)$ and $(3,2)$.

Theorem (K.-Yobuko-Yu)

When $g=3$, Oort's conjecture holds precisely when $p \neq 2$.

- A generic threefold X has $a(X)=1$. Its PFTQ is characterised by $t \in C^{0}(k)$ and $u \notin D_{t}$.
- Our computations show for such (X, λ) that

$$
\operatorname{Aut}((X, \lambda)) \simeq \begin{cases}C_{2}^{3} & \text { for } p=2 \\ C_{2} & \text { for } p \neq 2\end{cases}
$$

