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Inverse Galois Prolem (IGP)

Let G be a finite group. The IGP asks:
Does there exist a Galois extension L/Q such that Gal(L/Q) ∼= G ?

Conjecture

Every finite group G occurs as a Galois group over Q.

Hilbert (1897): Sn, An for all n

Shafarevich (1954): All finite solvable groups
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Absolute Galois group

Let GQ = Gal(Q̄/Q) be the absolute Galois group of Q.
It is a profinite group, compact under the profinite topology.
Finite quotients of GQ correspond to finite Galois extensions L/Q.

IGP reformulated

What are the finite quotients of GQ?
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Galois representations

A Galois representation is a continuous homomorphism

ρ : GQ → GL(n,R)

where R is a topological ring.

If R is discrete (e.g. R = Fq), then ρ(GQ) ∼= Gal(Q̄ker(ρ)/Q) is
finite.

Hence, (surjective) Galois representations may answer IGP for
finite linear groups.
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Some known results

Consider the action of GQ on algebro-geometric objects.

Serre (1972): Elliptic curves E/Q (without CM) ⇒ GL(2,F`)
Ribet (1975): Modular forms (cuspidal Hecke eigenforms of
even weight) ⇒ PGL(2,F`r ) (r odd), PSL(2,F`r ) (r even)

Zywina (2013): Elliptic surface ⇒ PSL(2,F`) for all ` > 3

Dieulefait & Vila (2004): Smooth projective surfaces
⇒ PSL(3,F`), PSU(3,F`), SL(3,F`), SU(3,F`)
. . .

We consider Galois representations attached to abelian varieties.
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Abelian varieties

Let A be an abelian variety of dimension n, defined over Q.

A(Q̄) is a group. Let ` be a prime.
Torsion points A[`] := {P ∈ A(Q̄) : [`]P = 0} ∼= (Z/`Z)2n.
GQ acts on A[`], yielding a Galois representation

ρA,` : GQ → GL(A[`]) ∼= GL(2n,F`).

The Weil pairing e` is a perfect pairing

e` : A[`]× A∨[`]→ µ`(Q̄) ∼= F`.

A is principally polarised when there exists an isogeny λ : A→ A∨

of degree 1. In this case,

e` : A[`]× A[`]→ F` : (P,Q) 7→ e`(P, λ(Q)).



Introduction Setup Theoretic tools Given A, find ` Given `, find A

General symplectic group

Let V be a 2n-dimensional F`-vector space. A pairing
〈·, ·〉 : V × V → F` is called symplectic when it is skew-symmetric
and non-degenerate.

We define the symplectic group

Sp(V , 〈·, ·〉) := {M ∈ GL(V ) : ∀v1, v2 ∈ V , 〈Mv1,Mv2〉 = 〈v1, v2〉}

and the general symplectic group

GSp(V , 〈·, ·〉) := {M ∈ GL(V ) : ∃m ∈ F×` s.t. ∀v1, v2 ∈ V ,
〈Mv1,Mv2〉 = m〈v1, v2〉}.
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Symplectic image

The Weil pairing is a symplectic pairing.
Since GQ acts on µ`(Q̄) ∼= F` through the mod ` cyclotomic
character χ`, the action of GQ on A[`] is compatible with the Weil
pairing:

〈ρ(σ)(P), ρ(σ)(Q)〉 = χ`(σ)〈P,Q〉

for σ ∈ GQ, P,Q ∈ A[`].
Hence, ρA,` has a symplectic image:

ρA,` : GQ → GSp(A[`], 〈·, ·〉) ∼= GSp(2n,F`).

Surjective ρA,` solve IGP for general symplectic groups.
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Surjective ρA,`

The image of ρA,` in GSp(2n,F`) depends on A and `.

We ask the following questions:

1 Given a principally polarised abelian variety A/Q, for which
primes ` is ρA,` surjective?

2 Given a prime `, how do we construct an abelian variety A/Q
such that ρA,` is surjective?
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Some known results

Theorem (Serre, 1985)

Let A be a principally polarised abelian variety of dimension n, defined
over a number field K . Assume that EndK̄ (A) = Z and that n = 2, 6 or
odd. Then there exists a bound BA such that ρA,` is surjective for all
` > BA.

Theorem (Dieulefait, 2002)

Let A be a principally polarised abelian surface (so n = 2), defined over
Q. Assume that EndQ̄(A) = Z. Then there is an explicit algorithm to
find a finite set of primes containing those for which ρA,` is not surjective.

Theorem (Arias-de-Reyna & Vila, 2010)

Given a prime ` > 3, one can construct an abelian surface A/Q such that
ρA,` is surjective, by choosing it to be the Jacobian of a suitable genus 2
curve.
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Our main results

We have treated the case of n = 3, ρA,` : GQ → GSp(6,F`).

Theorem (AdR-A-K-R-T-V)

For a suitable principally polarised given A/Q, there is a numerical
algorithm which realises GSp(6,F`) as the image of ρA,` for an
explicit list of prime numbers `.

Question 2: A theoretical construction of A/Q is in progress.
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Sufficient condition for surjectivity of ρA,`

Recall that GSp(2n,F`) ∼= GSp(A[`], 〈·, ·〉) and that GQ acts
through the mod ` cyclotomic character.

Proposition

When Im(ρA,`) ⊃ Sp(A[`], 〈·, ·〉) then Im(ρA,`) = GSp(A[`], 〈·, ·〉).

PROOF: We have an exact sequence

1→ Sp(A[`], 〈·, ·〉)→ GSp(A[`], 〈·, ·〉) m−→ F×` → 1

where m : A 7→ a when 〈Av1,Av2〉 = a〈v1, v2〉 for all v1, v2 ∈ A[`].

Restricting m to Im(ρA,`) yields the cyclotomic mod ` character, which is

surjective.
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Structure of Sp, transvections

Let V be a finite-dimensional vector space over F`, endowed with a
symplectic pairing 〈·, ·〉 : V × V → F`.

A transvection is an element T ∈ GSp(V , 〈·, ·〉) which fixes a
hyperplane H ⊂ V .

Theorem (Arias-de-Reyna & Kappen, 2013)

Let ` ≥ 5 and let G ⊂ GSp(V , 〈·, ·〉) be a subgroup containing both
a non-trivial transvection and an element of non-zero trace whose
characteristic polynomial is irreducible. Then G ⊃ Sp(V , 〈·, ·〉).
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Finding transvections: Hall’s condition

Proposition (Hall, 2011)

Let A be a principally polarised n-dimensional abelian variety, defined
over a number field K .
Suppose that there exists a finite extension L/K so that the Néron model
of A/L over OL has a semistable fibre with toric dimension 1, at p say.
Let ` be a prime such that ` - (Ãp : Ã0

p) and p - `.
Then Im(ρA,`) contains a transvection T .

We may take T to be the image of a generator of the inertia subgroup of
any prime in K (A[`]) lying over p.

Hall’s condition

There exists a finite extension L/K so that the Néron model of A/L over
OL has a semistable fibre with toric dimension 1.
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Irreducible characteristic polynomial

Consider ρA,`(Frobq), for q a prime of good reduction for A.

For any α̃ ∈ End(A[`]), induced by α ∈ End(A), we have

CharPoly(α̃) = CharPoly(α) mod `.

Now ρA,`(Frobq) ∈ End(A[`]) is induced by the Frobenius
endomorphism of the reduction φq ∈ End(A/Fq) (induced by
φq ∈ GFq).
Hence,

CharPoly(ρA,`(Frobq)) = CharPoly(φq) mod `.

Note: For A = Jac(C ), simply count |C (Fqr )| for 1 ≤ r ≤ n.
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Given A, find `: Example

Let C : y 2 = f (x) where

f (x) = x2(x − 1)(x + 1)(x − 2)(x + 2)(x − 3) + 7(x − 28) ∈ Z[x ].

C is a hyperelliptic curve of genus 3. Let A = Jac(C ).

By construction, A satisfies Hall’s condition at p = 7.
We compute (Ã7 : Ã0

7) = 2.

So for ` ≥ 11, we have transvections.
Now for ` 6= q, check whether ρA,`(Frobq) has irreducible
characteristic polynomial over F` and non-zero trace.
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Given A, find `: Example

Computations in SAGE give a list of primes ` for a fixed q (q = 53 say).

We use that CharPoly(ρA,`(Frobq)) = CharPoly(φq) mod `, where
φq is the Frobenius endomorphism of the reduction of C at q.

These primes form a subset with a Dirichlet density of 1
6 .

The Galois group G of CharPoly(Frob53) is C2 o S3, |G | = 48.

To find all 11 ≤ ` ≤ B, we vary q. Our computations have checked up to
B = 100.000.

Conclusion

For this A/Q, our algorithm realises GSp(6,F`) as the image of ρA,` for
all 11 ≤ ` ≤ 100.000.
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Weil polynomials - work in progress

Fix a prime `.

A Weil polynomial is a monic polynomial with integer coefficients,
whose roots come in complex conjugate pairs and all have absolute
value

√
q for some q.

CharPoly(φq), for A/Fq, is a Weil polynomial. When n = 3, it has
degree 6.

Conversely, we may start with such a polynomial:

Pq(t) = t6 + at5 + bt4 + ct3 + qbt2 + q2at + q3

and find q, a, b, c for which it is an irreducible Weil polynomial
which stays irreducible after reducing modulo `.
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Obtaining an abelian variety - work in progress

Suppose we have found a suitable Pq(t).

Theorem (Honda & Tate, 1968)

There is a bijection between the set of Fq-isogeny classes of simple
abelian varieties over Fq and Weil polynomials for q.

Hence, we obtain a three-dimensional abelian variety A/Fq such
that CharPoly(Frobq) = Pq(t).

Theorem (Howe, 1995)

When q - c, then Pq(t) is an ordinary Weil polynomial,
corresponding to a simple ordinary abelian variety over Fq. When
the abelian variety is odd-dimensional, it is isogenous to a
principally polarised abelian variety.

So we may assume that A/Fq is principally polarised.
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Jacobians of genus 3 curves - work in progress

Theorem (Oort & Ueno, 1973)

Any principally polarised abelian variety of dimension 3 over Fq is
isogenous to the Jacobian of a curve C of genus 3, defined over a
finite extension L/Fq.

When A is absolutely simple, C is defined over Fq.

Because C is a genus 3 curve, it is either a hyperelliptic curve or a
smooth plane quartic curve.

We now lift C , so that C and A = Jac(C ) are defined over Q, in
fact over Z.
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Imposing Hall’s condition - work in progress

For surjective ρA,` it remains to find a transvection in the image. Recall:

Hall’s condition

There exists a finite extension L/K so that the Néron model of A/L over
OL has a semistable fibre with toric dimension 1.

Suppose that C has semi-stable reduction. (Always true over some K/Q.)

Let C/Z be the minimal regular model of C . Then Pic0
C/Z is (the identity

component of) a Néron model for Jac(C ) = A. Its fibres are semi-stable
curves over finite fields.

A fibre has toric dimension 1 exactly when it has a single node.
So we can construct C/Z in such a way that it has a reduction with one
node, using the Chinese Remainder Theorem.

Then Im(ρA,`) = GSp(6,F`), answering Question 2.
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