Galois representations and symplectic Galois groups over \mathbb{Q}

Valentijn Karemaker (UU)

Joint with S. Arias-de-Reyna, C. Armana, M. Rebolledo, L. Thomas and N. Vila Diamant Symposium, Arnhem

June 6, 2014

Inverse Galois Prolem (IGP)

Let G be a finite group. The IGP asks:
Does there exist a Galois extension L / \mathbb{Q} such that $\operatorname{Gal}(L / \mathbb{Q}) \cong G$?

Conjecture

Every finite group G occurs as a Galois group over \mathbb{Q}.

- Hilbert (1897): S_{n}, A_{n} for all n
- Shafarevich (1954): All finite solvable groups

Absolute Galois group

Let $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ be the absolute Galois group of \mathbb{Q}.
It is a profinite group, compact under the profinite topology.
Finite quotients of $G_{\mathbb{Q}}$ correspond to finite Galois extensions L / \mathbb{Q}.

IGP reformulated
What are the finite quotients of $G_{\mathbb{Q}}$?

Galois representations

A Galois representation is a continuous homomorphism

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(n, R)
$$

where R is a topological ring.
If R is discrete (e.g. $R=\mathbb{F}_{q}$), then $\rho\left(G_{\mathbb{Q}}\right) \cong \operatorname{Gal}\left(\overline{\mathbb{Q}}^{\operatorname{ker}(\rho)} / \mathbb{Q}\right)$ is finite.

Hence, (surjective) Galois representations may answer IGP for finite linear groups.

Some known results

Consider the action of $G_{\mathbb{Q}}$ on algebro-geometric objects.

- Serre (1972): Elliptic curves E / \mathbb{Q} (without $C M) \Rightarrow G L\left(2, \mathbb{F}_{\ell}\right)$
- Ribet (1975): Modular forms (cuspidal Hecke eigenforms of even weight) $\Rightarrow \operatorname{PGL}\left(2, \mathbb{F}_{\ell} r\right)(r$ odd $), \operatorname{PSL}\left(2, \mathbb{F}_{\ell} r\right)(r$ even $)$
- Zywina (2013): Elliptic surface $\Rightarrow \operatorname{PSL}\left(2, \mathbb{F}_{\ell}\right)$ for all $\ell>3$
- Dieulefait \& Vila (2004): Smooth projective surfaces $\Rightarrow \operatorname{PSL}\left(3, \mathbb{F}_{\ell}\right), \operatorname{PSU}\left(3, \mathbb{F}_{\ell}\right), \operatorname{SL}\left(3, \mathbb{F}_{\ell}\right), \operatorname{SU}\left(3, \mathbb{F}_{\ell}\right)$
- ...

We consider Galois representations attached to abelian varieties.

Abelian varieties

Let A be an abelian variety of dimension n, defined over \mathbb{Q}.
$A(\overline{\mathbb{Q}})$ is a group. Let ℓ be a prime.
Torsion points $A[\ell]:=\{P \in A(\overline{\mathbb{Q}}):[\ell] P=0\} \cong(\mathbb{Z} / \ell \mathbb{Z})^{2 n}$.
$G_{\mathbb{Q}}$ acts on $A[\ell]$, yielding a Galois representation

$$
\rho_{A, \ell}: G_{\mathbb{Q}} \rightarrow G L(A[\ell]) \cong \mathrm{GL}\left(2 n, \mathbb{F}_{\ell}\right)
$$

The Weil pairing e_{ℓ} is a perfect pairing

$$
e_{\ell}: A[\ell] \times A^{\vee}[\ell] \rightarrow \mu_{\ell}(\overline{\mathbb{Q}}) \cong \mathbb{F}_{\ell}
$$

A is principally polarised when there exists an isogeny $\lambda: A \rightarrow A^{\vee}$ of degree 1 . In this case,

$$
e_{\ell}: A[\ell] \times A[\ell] \rightarrow \mathbb{F}_{\ell}:(P, Q) \mapsto e_{\ell}(P, \lambda(Q))
$$

General symplectic group

Let V be a $2 n$-dimensional \mathbb{F}_{ℓ}-vector space. A pairing
$\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}_{\ell}$ is called symplectic when it is skew-symmetric and non-degenerate.

We define the symplectic group
$\operatorname{Sp}(V,\langle\cdot, \cdot\rangle):=\left\{M \in \operatorname{GL}(V): \forall v_{1}, v_{2} \in V,\left\langle M v_{1}, M v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle\right\}$
and the general symplectic group
$\operatorname{GSp}(V,\langle\cdot, \cdot\rangle):=\left\{M \in \operatorname{GL}(V): \exists m \in \mathbb{F}_{\ell}^{\times}\right.$s.t. $\forall v_{1}, v_{2} \in V$, $\left.\left\langle M v_{1}, M v_{2}\right\rangle=m\left\langle v_{1}, v_{2}\right\rangle\right\}$.

Symplectic image

The Weil pairing is a symplectic pairing.
Since $G_{\mathbb{Q}}$ acts on $\mu_{\ell}(\overline{\mathbb{Q}}) \cong \mathbb{F}_{\ell}$ through the $\bmod \ell$ cyclotomic character χ_{ℓ}, the action of $G_{\mathbb{Q}}$ on $A[\ell]$ is compatible with the Weil pairing:

$$
\langle\rho(\sigma)(P), \rho(\sigma)(Q)\rangle=\chi_{\ell}(\sigma)\langle P, Q\rangle
$$

for $\sigma \in G_{\mathbb{Q}}, P, Q \in A[\ell]$.
Hence, $\rho_{A, \ell}$ has a symplectic image:

$$
\rho_{A, \ell}: G_{\mathbb{Q}} \rightarrow \operatorname{GSp}(A[\ell],\langle\cdot, \cdot\rangle) \cong \operatorname{GSp}\left(2 n, \mathbb{F}_{\ell}\right)
$$

Surjective $\rho_{A, \ell}$ solve IGP for general symplectic groups.

Surjective $\rho_{A, \ell}$

The image of $\rho_{A, \ell}$ in $\operatorname{GSp}\left(2 n, \mathbb{F}_{\ell}\right)$ depends on A and ℓ.

We ask the following questions:
(1) Given a principally polarised abelian variety A / \mathbb{Q}, for which primes ℓ is $\rho_{A, \ell}$ surjective?
(2) Given a prime ℓ, how do we construct an abelian variety A / \mathbb{Q} such that $\rho_{A, \ell}$ is surjective?

Some known results

Theorem (Serre, 1985)

Let A be a principally polarised abelian variety of dimension n, defined over a number field K. Assume that $\operatorname{End}_{\bar{K}}(A)=\mathbb{Z}$ and that $n=2,6$ or odd. Then there exists a bound B_{A} such that $\rho_{A, \ell}$ is surjective for all $\ell>B_{A}$.

Theorem (Dieulefait, 2002)

Let A be a principally polarised abelian surface (so $n=2$), defined over \mathbb{Q}. Assume that $\operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}$. Then there is an explicit algorithm to find a finite set of primes containing those for which $\rho_{A, \ell}$ is not surjective.

Theorem (Arias-de-Reyna \& Vila, 2010)

Given a prime $\ell>3$, one can construct an abelian surface A / \mathbb{Q} such that $\rho_{A, \ell}$ is surjective, by choosing it to be the Jacobian of a suitable genus 2 curve.

Our main results

We have treated the case of $n=3, \rho_{A, \ell}: G_{\mathbb{Q}} \rightarrow \operatorname{GSp}\left(6, \mathbb{F}_{\ell}\right)$.
Theorem (AdR-A-K-R-T-V)
For a suitable principally polarised given A / \mathbb{Q}, there is a numerical algorithm which realises $\operatorname{GSp}\left(6, \mathbb{F}_{\ell}\right)$ as the image of $\rho_{A, \ell}$ for an explicit list of prime numbers ℓ.

Question 2: A theoretical construction of A / \mathbb{Q} is in progress.

Sufficient condition for surjectivity of $\rho_{A, \ell}$

Recall that $\operatorname{GSp}\left(2 n, \mathbb{F}_{\ell}\right) \cong \operatorname{GSp}(A[\ell],\langle\cdot, \cdot\rangle)$ and that $G_{\mathbb{Q}}$ acts through the $\bmod \ell$ cyclotomic character.

Proposition

When $\operatorname{Im}\left(\rho_{A, \ell}\right) \supset \operatorname{Sp}(A[\ell],\langle\cdot, \cdot\rangle)$ then $\operatorname{Im}\left(\rho_{A, \ell}\right)=\operatorname{GSp}(A[\ell],\langle\cdot, \cdot\rangle)$.
PROOF: We have an exact sequence

$$
1 \rightarrow \operatorname{Sp}(A[\ell],\langle\cdot, \cdot\rangle) \rightarrow \operatorname{GSp}(A[\ell],\langle\cdot, \cdot\rangle) \xrightarrow{m} \mathbb{F}_{\ell}^{\times} \rightarrow 1
$$

where $m: A \mapsto a$ when $\left\langle A v_{1}, A v_{2}\right\rangle=a\left\langle v_{1}, v_{2}\right\rangle$ for all $v_{1}, v_{2} \in A[\ell]$. Restricting m to $\operatorname{Im}\left(\rho_{A, \ell}\right)$ yields the cyclotomic $\bmod \ell$ character, which is surjective.

Structure of $S p$, transvections

Let V be a finite-dimensional vector space over \mathbb{F}_{ℓ}, endowed with a symplectic pairing $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}_{\ell}$.

A transvection is an element $T \in \operatorname{GSp}(V,\langle\cdot, \cdot\rangle)$ which fixes a hyperplane $H \subset V$.

Theorem (Arias-de-Reyna \& Kappen, 2013)
Let $\ell \geq 5$ and let $G \subset \operatorname{GSp}(V,\langle\cdot, \cdot\rangle)$ be a subgroup containing both a non-trivial transvection and an element of non-zero trace whose characteristic polynomial is irreducible. Then $G \supset \operatorname{Sp}(V,\langle\cdot, \cdot\rangle)$.

Finding transvections: Hall's condition

Proposition (Hall, 2011)

Let A be a principally polarised n-dimensional abelian variety, defined over a number field K.
Suppose that there exists a finite extension L / K so that the Néron model of A / L over \mathcal{O}_{L} has a semistable fibre with toric dimension 1 , at \mathfrak{p} say. Let ℓ be a prime such that $\ell \nmid\left(\tilde{A}_{\mathfrak{p}}: \tilde{A}_{\mathfrak{p}}^{0}\right)$ and $\mathfrak{p} \nmid \ell$.
Then $\operatorname{Im}\left(\rho_{A, \ell}\right)$ contains a transvection T.
We may take T to be the image of a generator of the inertia subgroup of any prime in $K(A[\ell])$ lying over \mathfrak{p}.

Hall's condition

There exists a finite extension L / K so that the Néron model of A / L over \mathcal{O}_{L} has a semistable fibre with toric dimension 1 .

Irreducible characteristic polynomial

Consider $\rho_{A, \ell}\left(\right.$ Frob $\left._{q}\right)$, for q a prime of good reduction for A.
For any $\tilde{\alpha} \in \operatorname{End}(A[\ell])$, induced by $\alpha \in \operatorname{End}(A)$, we have

$$
\operatorname{CharPoly}(\tilde{\alpha})=\operatorname{CharPoly}(\alpha) \bmod \ell
$$

Now $\rho_{A, \ell}\left(\operatorname{Frob}_{q}\right) \in \operatorname{End}(A[\ell])$ is induced by the Frobenius endomorphism of the reduction $\phi_{q} \in \operatorname{End}\left(A / \mathbb{F}_{q}\right)$ (induced by $\phi_{q} \in G_{\mathbb{F}_{q}}$).
Hence,

$$
\operatorname{CharPoly}\left(\rho_{A, \ell}\left(\operatorname{Frob}_{q}\right)\right)=\operatorname{CharPoly}\left(\phi_{q}\right) \quad \bmod \ell
$$

Note: For $A=\operatorname{Jac}(C)$, simply count $\left|C\left(\mathbb{F}_{q^{r}}\right)\right|$ for $1 \leq r \leq n$.

Given A, find ℓ : Example

Let $C: y^{2}=f(x)$ where
$f(x)=x^{2}(x-1)(x+1)(x-2)(x+2)(x-3)+7(x-28) \in \mathbb{Z}[x]$.
C is a hyperelliptic curve of genus 3 . Let $A=\operatorname{Jac}(C)$.
By construction, A satisfies Hall's condition at $p=7$.
We compute $\left(\tilde{A}_{7}: \tilde{A}_{7}^{0}\right)=2$.
So for $\ell \geq 11$, we have transvections.
Now for $\ell \neq q$, check whether $\rho_{A, \ell}\left(\operatorname{Frob}_{q}\right)$ has irreducible characteristic polynomial over \mathbb{F}_{ℓ} and non-zero trace.

Given A, find ℓ : Example

Computations in SAGE give a list of primes ℓ for a fixed q ($q=53$ say $)$.
We use that $\operatorname{CharPoly}\left(\rho_{A, \ell}\left(\operatorname{Frob}_{q}\right)\right)=\operatorname{CharPoly}\left(\phi_{q}\right) \bmod \ell$, where ϕ_{q} is the Frobenius endomorphism of the reduction of C at q.

These primes form a subset with a Dirichlet density of $\frac{1}{6}$. The Galois group G of CharPoly $\left(\right.$ Frob $\left._{53}\right)$ is $C_{2} \imath S_{3},|G|=48$.

To find all $11 \leq \ell \leq B$, we vary q. Our computations have checked up to $B=100.000$.

Conclusion

For this A / \mathbb{Q}, our algorithm realises $\operatorname{GSp}\left(6, \mathbb{F}_{\ell}\right)$ as the image of $\rho_{A, \ell}$ for all $11 \leq \ell \leq 100.000$. \square

Weil polynomials - work in progress

Fix a prime ℓ.

A Weil polynomial is a monic polynomial with integer coefficients, whose roots come in complex conjugate pairs and all have absolute value \sqrt{q} for some q.

CharPoly $\left(\phi_{q}\right)$, for A / \mathbb{F}_{q}, is a Weil polynomial. When $n=3$, it has degree 6.

Conversely, we may start with such a polynomial:

$$
P_{q}(t)=t^{6}+a t^{5}+b t^{4}+c t^{3}+q b t^{2}+q^{2} a t+q^{3}
$$

and find q, a, b, c for which it is an irreducible Weil polynomial which stays irreducible after reducing modulo ℓ.

Obtaining an abelian variety - work in progress

Suppose we have found a suitable $P_{q}(t)$.
Theorem (Honda \& Tate, 1968)
There is a bijection between the set of \mathbb{F}_{q}-isogeny classes of simple abelian varieties over \mathbb{F}_{q} and Weil polynomials for q.

Hence, we obtain a three-dimensional abelian variety A / \mathbb{F}_{q} such that CharPoly $\left(\operatorname{Frob}_{q}\right)=P_{q}(t)$.

Theorem (Howe, 1995)
When $q \nmid c$, then $P_{q}(t)$ is an ordinary Weil polynomial, corresponding to a simple ordinary abelian variety over \mathbb{F}_{q}. When the abelian variety is odd-dimensional, it is isogenous to a principally polarised abelian variety.

So we may assume that A / \mathbb{F}_{q} is principally polarised.

Jacobians of genus 3 curves - work in progress

Theorem (Oort \& Ueno, 1973)

Any principally polarised abelian variety of dimension 3 over \mathbb{F}_{q} is isogenous to the Jacobian of a curve C of genus 3, defined over a finite extension L / \mathbb{F}_{q}.

When A is absolutely simple, C is defined over \mathbb{F}_{q}.
Because C is a genus 3 curve, it is either a hyperelliptic curve or a smooth plane quartic curve.

We now lift C, so that C and $A=\operatorname{Jac}(C)$ are defined over \mathbb{Q}, in fact over \mathbb{Z}.

Imposing Hall's condition - work in progress

For surjective $\rho_{A, \ell}$ it remains to find a transvection in the image. Recall:

Hall's condition

There exists a finite extension L / K so that the Néron model of A / L over \mathcal{O}_{L} has a semistable fibre with toric dimension 1 .

Suppose that C has semi-stable reduction. (Always true over some K / \mathbb{Q}.)
Let \mathcal{C} / \mathbb{Z} be the minimal regular model of C. Then $\operatorname{Pic}_{\mathcal{C} / \mathbb{Z}}^{0}$ is (the identity component of) a Néron model for $\operatorname{Jac}(C)=A$. Its fibres are semi-stable curves over finite fields.

A fibre has toric dimension 1 exactly when it has a single node. So we can construct C / \mathbb{Z} in such a way that it has a reduction with one node, using the Chinese Remainder Theorem.

Then $\operatorname{Im}\left(\rho_{A, \ell}\right)=\operatorname{GSp}\left(6, \mathbb{F}_{\ell}\right)$, answering Question 2 .

