Solution of Exercise 1.15. Given $x \in \mathbf{R}^{n}$, the equality $y=f(x) \in \mathbf{R}^{n}$ yields

$$
\|y\|^{2}=\|f(x)\|^{2}=\frac{\|x\|^{2}}{r^{2}-\|x\|^{2}}, \quad \text { i.e. } \quad r^{2}\|y\|^{2}-\|y\|^{2}\|x\|^{2}=\|x\|^{2}
$$

therefore solving for $\|x\|$ gives

$$
(\star) \quad\|x\|=\frac{r\|y\|}{\sqrt{1+\|y\|^{2}}}
$$

We now prove the injectivity of f. Indeed, suppose $f(x)=f(\widetilde{x})=y$, for x and $\widetilde{x} \in \mathbf{R}^{n}$. Then (夫) implies $\|x\|=\|\widetilde{x}\|$ and thus

$$
\frac{1}{\sqrt{r^{2}-\|x\|^{2}}} x=\frac{1}{\sqrt{r^{2}-\|x\|^{2}}} \widetilde{x}, \quad \text { so } \quad x=\widetilde{x}
$$

Next comes the surjectivity. Given $y \in \mathbf{R}^{n}$ consider the equation $y=f(x)$ for $x \in \mathbf{R}^{n}$. Then, on the basis of (\star),

$$
x=\sqrt{r^{2}-\|x\|^{2}} y=\sqrt{r^{2}-\frac{r^{2}\|y\|^{2}}{1+\|y\|^{2}}} y=\frac{r}{\sqrt{1+\|y\|^{2}}} y
$$

where x belongs to B as required. Accordingly, $f: B \rightarrow \mathbf{R}^{n}$ is a bijection with f^{-1} as given. Finally, f and f^{-1} are continuous, being the composition of such mappings.

