Solution of Exercise 2.31.

(i) Straightforward computation.
(ii) Note that $g \circ f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. We have

$$
D(g \circ f)=((D g) \circ f) \circ D f=\left(g^{\prime} \circ f\right) D f
$$

where $g^{\prime} \circ f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. Therefore, by means of transposition,

$$
\operatorname{grad}(g \circ f)=(D(g \circ f))^{t}=\left(\left(g^{\prime} \circ f\right) D f\right)^{t}=\left(g^{\prime} \circ f\right)(D f)^{t}=\left(g^{\prime} \circ f\right) \operatorname{grad} f
$$

(iii) $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $D(g \circ f)=((D g) \circ f) \circ D f$ imply

$$
\operatorname{grad}(g \circ f)=D(g \circ f)^{t}=(D f)^{t} \circ(D g)^{t} \circ f=(D f)^{t}(\operatorname{grad} g) \circ f
$$

In particular,

$$
\begin{aligned}
(\operatorname{grad}(g \circ f))_{j} & =\left\langle\operatorname{grad}(g \circ f), e_{j}\right\rangle=\left\langle(D f)^{t}(\operatorname{grad} g) \circ f, e_{j}\right\rangle=\left\langle(\operatorname{grad} g) \circ f,(D f) e_{j}\right\rangle \\
& =\left\langle(\operatorname{grad} g) \circ f, D_{j} f\right\rangle
\end{aligned}
$$

