Solution of Exercise 2.39.

(i) Obvious from $A_{i} x=\sum_{1 \leq j \leq n} a_{i j} x_{j}$.
(ii) The first assertion follows by repeated application of $D A(x)=A$, for all $x \in \mathbf{R}^{n}$, see Example 2.2.5. The differentiability of A^{-1} can be deduced from Formula (2.7) and its subsequent sentence.
(iii) Direct consequence of the chain rule.
(iv) Note that $g \circ A(x)=g\left(A_{1} x, \ldots, A_{n} x\right)$. Therefore the chain rule and part (i) imply

$$
D_{k}(g \circ A)(x)=\sum_{1 \leq i \leq n} D_{i} g(A x) a_{i k}=\sum_{1 \leq j \leq n} a_{j k}\left(D_{j} g\right) \circ A(x) .
$$

Application of this identity with g replaced by $D_{j} g$, for $1 \leq j \leq n$, leads to

$$
\begin{aligned}
\Delta g \circ A(x) & =\sum_{1 \leq k \leq n}\left(\sum_{1 \leq j \leq n} a_{j k} \sum_{1 \leq i \leq n} a_{i k}\left(D_{i} D_{j} g\right) \circ A(x)\right) \\
& =\sum_{1 \leq i, j \leq n}\left(\sum_{1 \leq k \leq n} a_{i k} a_{j k}\right)\left(D_{i} D_{j} g\right) \circ A(x) .
\end{aligned}
$$

(v) $A \in \mathbf{O}(n, \mathbf{R})$ implies $A B:=A A^{t}=A^{t} A=I$, that is, for all $1 \leq i, j \leq n$,

$$
\sum_{1 \leq k \leq n} a_{i k} b_{k j}=\sum_{1 \leq k \leq n} a_{i k} a_{j k}=\delta_{i j} .
$$

Hence the desired conclusion follows from part (iv).

