Solution of Exercise 2.7. We consider the last case, of the mapping $f(x)=\langle x, x\rangle x$. For fixed $x \in \mathbf{R}^{n}$ and all $h \in \mathbf{R}^{n}$ we obtain

$$
\begin{aligned}
& f(x+h)-f(x)=\langle x+h, x+h\rangle(x+h)-\langle x, x\rangle x=(\langle x, x\rangle h+\langle x, h\rangle x+\langle h, x\rangle x) \\
& \quad+(\langle x, h\rangle h+\langle h, x\rangle h+\langle h, h\rangle x+\langle h, h\rangle h)=: D f(x) h+\epsilon_{x}(h) .
\end{aligned}
$$

Here, with $l_{x} \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}\right)$ given by $l_{x}(h)=\langle x, h\rangle$, we have

$$
D f(x)=\|x\|^{2} I+2 l_{x} x \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)
$$

Furthermore, on the basis of the Cauchy-Schwarz inequality we see

$$
\left\|\epsilon_{x}(h)\right\| \leq\|h\|^{2}(3\|x\|+\|h\|), \quad \text { hence } \quad \lim _{h \rightarrow 0} \frac{\left\|\epsilon_{x}(h)\right\|}{\|h\|}=0
$$

On the basis of Formula 2.10 we now see that the mapping f is differentiable on \mathbf{R}^{n} with derivative $D f(x)$ at x as above.

