Solution of Exercise 3.11.

(i) In view of $x_{1}>0$ and $x_{2}>0$ we have
$f(0 ; x)=x_{1}^{2}>0, \quad f(1 ; x)=1-x_{1}^{2}-x_{2}^{2}-1+x_{1}^{2}=-x_{2}^{2}<0, \quad f\left(x_{1}^{2}+x_{2}^{2}+1 ; x\right)=x_{1}^{2}>0$.
Application of the Intermediate Value Theorem 1.9.5 to the intervals [0,1] and $\left[1,1+x_{1}^{2}+x_{2}^{2}\right]$ now gives the existence of $y_{1}(x)$ and $y_{2}(x)$ such that

$$
f\left(y_{1}(x) ; x\right)=0 \quad \text { with } \quad 0<y_{1}(x)<1 ; \quad f\left(y_{2}(x) ; x\right)=0 \quad \text { with } \quad 1<y_{2}(x)
$$

(ii) On the basis of the definitions Φ is a mapping from U to V. For proving the surjectivity of Φ we show that given $y=\left(y_{1}, y_{2}\right) \in V$ we can find $x \in U$ such that y_{1} and y_{2} are the roots of the quadratic polynomial function $f(y ; x)$. In fact, y_{1} and y_{2} are roots of the monic polynomial

$$
\left(y-y_{1}\right)\left(y-y_{2}\right)=y^{2}-\left(y_{1}+y_{2}\right) y+y_{1} y_{2} .
$$

Comparison of coefficients now yields

$$
y_{1}+y_{2}=x_{1}^{2}+x_{2}^{2}+1, \quad y_{1} y_{2}=x_{1}^{2}
$$

In other words,

$$
x_{2}^{2}=y_{1}+y_{2}-x_{1}^{2}-1=-y_{1} y_{2}+y_{1}+y_{2}-1=\left(1-y_{1}\right)\left(y_{2}-1\right) .
$$

Hence there is a solution $x \in U$, given by

$$
x_{1}=\sqrt{y_{1} y_{2}}, \quad x_{2}=\sqrt{\left(1-y_{1}\right)\left(y_{2}-1\right)}
$$

and moreover, this is the only possible one. Therefore, $\Phi: U \rightarrow V$ is bijective with the given $\Psi: V \rightarrow U$ as its inverse.
(iii) $\sqrt{ }:\left[0, \infty\left[\rightarrow \mathbf{R}\right.\right.$ is continuous, and a C^{∞} function on the open interval $] 0, \infty\left[\right.$. Since $y_{1} y_{2}>0$ and $\left(1-y_{1}\right)\left(y_{2}-1\right)>0$ for $y \in V$, the mapping Ψ is of class C^{∞}. We have

$$
\Psi(y)=\binom{\sqrt{y_{1} y_{2}}}{\sqrt{\left(1-y_{1}\right)\left(y_{2}-1\right)}}, \quad \text { so } \quad 2 D \Psi(y)=\left(\begin{array}{cc}
\sqrt{\frac{y_{2}}{y_{1}}} & \sqrt{\frac{y_{1}}{y_{2}}} \\
-\sqrt{\frac{y_{2}-1}{1-y_{1}}} & \sqrt{\frac{1-y_{1}}{y_{2}-1}}
\end{array}\right) .
$$

Hence

$$
\begin{aligned}
4 \operatorname{det} D \Psi(y) & =\sqrt{\frac{y_{2}\left(1-y_{1}\right)}{y_{1}\left(y_{2}-1\right)}}+\sqrt{\frac{y_{1}\left(y_{2}-1\right)}{y_{2}\left(1-y_{1}\right)}}=\frac{y_{2}\left(1-y_{1}\right)+y_{1}\left(y_{2}-1\right)}{\sqrt{y_{1} y_{2}\left(1-y_{1}\right)\left(y_{2}-1\right)}} \\
& =\frac{y_{2}-y_{2} y_{1}+y_{1} y_{2}-y_{1}}{\sqrt{y_{1} y_{2}} \sqrt{\left(1-y_{1}\right)\left(y_{2}-1\right)}}=\frac{y_{2}-y_{1}}{x_{1} x_{2}} .
\end{aligned}
$$

This implies det $D \Psi(y)>0$, and on the basis of the Global Inverse Function Theorem 3.2.8 we may conclude that $\Psi: V \rightarrow U$ is a C^{∞} diffeomorphism. But then $\Phi: U \rightarrow V$ is one too.
(iv) We have $y(y-1) g_{y}(x)=-f(y ; x)$, while $y(y-1) \neq 0$ for $y \in I$.
(v) According to part (ii), for every $x \in U$, there exists unique $y \in V$ such that

$$
0<y_{1}<1, \quad g_{y_{1}}(x)=0 \quad \text { and } \quad 1<y_{2}, \quad g_{y_{2}}(x)=0
$$

In other words,

$$
x \in V_{y_{1}} \quad \text { with } V_{y_{1}} \text { hyperbola } \quad \text { and } \quad x \in V_{y_{2}} \quad \text { with } V_{y_{2}} \text { ellipse. }
$$

Moreover, it follows from (ii) that given $y \in V$ there is unique $x=\Psi(y) \in U$ such that $g_{y_{1}}(x)=g_{y_{2}}(x)=0$. That is,

$$
V_{y_{1}} \cap V_{y_{2}} \cap U=\{x\} .
$$

