Solution of Exercise 3.36. We introduce

$$
F: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \quad \text { by } \quad F(x ; a)=x-\int_{x}^{a} f(t) d t
$$

Then $F(0 ; b)=-\int_{0}^{b} f(t) d t=0$. Furthermore, the Fundamental Theorem 2.10.1 of Integral Calculus on \mathbf{R} implies

$$
\frac{d}{d x} \int_{x}^{a} f(t) d t=-f(x), \quad \text { hence } \quad D_{x} F(0 ; b)=1+f(0) \neq 0
$$

On the basis of the Implicit Function Theorem 3.5.1 there exists, for a in \mathbf{R} sufficiently close to b, a unique solution $x=x(a) \in \mathbf{R}$ for $F(x(a) ; a)=0$ with $x(a)$ near 0 . Furthermore, the Fundamental Theorem implies that F is a C^{1} function; therefore, it is a consequence of the Implicit Function Theorem that $a \mapsto x(a)$ is a C^{1} function. We have

$$
x^{\prime}(b)=-D_{x} F(0 ; b)^{-1} D_{a} F(0 ; b)=\frac{f(b)}{1+f(0)}
$$

Finally, suppose $f(t)=2 t-1$ and $b=1$. Then $1+f(0)=0$ and $\int_{0}^{1}(2 t-1) d t=\left[t^{2}-t\right]_{0}^{1}=0$; that is, the conditions of the Implicit Function Theorem are violated. Anyway, suppose there exists a solution $x=x(a) \in \mathbf{R}$ of $F(x ; a)$ for every a in some neighborhood V of 1 . Then we have, in particular, for $a \in V$ satisfying $0<a<1$,

$$
x=\int_{x}^{a}(2 t-1) d t=\left[t^{2}-t\right]_{x}^{a}=a^{2}-a-x^{2}+x, \quad \text { that is } \quad x^{2}=a(a-1)<0
$$

This contradiction shows the absence in this case of a solution $x=x(a)$ defined for all a near 1 .

