Solution of Exercise 4.14

(i) If we introduce the C^{∞} function

$$
g: \mathbf{R}^{n} \rightarrow \mathbf{R} \quad \text { given by } \quad g(x)=\langle A x, x\rangle+\langle b, x\rangle+c,
$$

then $V=g^{-1}(\{0\})$. According to the Submersion Theorem 4.5.2 we have that V is a C^{∞} submanifold in \mathbf{R}^{n} of dimension $n-1$ if g is a submersion at every point belonging to V. From Example 2.2.5 we obtain

$$
D g(x) \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}\right) \quad \text { is given by } \quad D g(x)=2 A x+b
$$

This mapping fails to be surjective only if it equals 0 , that is, if $x=-\frac{1}{2} A^{-1} b$ in view of the invertibility of A. Such an x belongs to V only if

$$
\frac{1}{4}\left\langle b, A^{-1} b\right\rangle-\frac{1}{2}\left\langle b, A^{-1} b\right\rangle+c=-\frac{1}{4}\left\langle b, A^{-1} b\right\rangle+c=0, \quad \text { i.e. } \quad \Delta=0 .
$$

(ii) This assertion follows immediately from the arguments in part (ii).
(iii) Using the fact that A is self-adjoint, we have

$$
\begin{aligned}
g(x) & =\left\langle A\left(y-\frac{1}{2} A^{-1} b\right), y-\frac{1}{2} A^{-1} b\right\rangle+\left\langle b, y-\frac{1}{2} A^{-1} b\right\rangle+c \\
& =\left\langle A y-\frac{1}{2} b, y-\frac{1}{2} A^{-1} b\right\rangle+\left\langle b, y-\frac{1}{2} A^{-1} b\right\rangle+c \\
& =\left\langle A y, y-\frac{1}{2} A^{-1} b\right\rangle+\frac{1}{2}\left\langle b, y-\frac{1}{2} A^{-1} b\right\rangle+c \\
& =\langle A y, y\rangle-\frac{1}{2}\langle y, b\rangle+\frac{1}{2}\langle b, y\rangle-\frac{1}{4}\left\langle b, A^{-1} b\right\rangle+c=\langle A y, y\rangle-\frac{1}{4} \Delta .
\end{aligned}
$$

Hence $x \in V$ if and only if $\langle A y, y\rangle=\frac{1}{4} \Delta$. Since A is positive definite, we have $\langle A y, y\rangle>0$ according to Definition 2.9.2, for $y \in \mathbf{R}^{n} \backslash\{0\}$. Hence $\Delta<0$ implies $V=\emptyset$. Furthermore, if $\Delta=0$, then $y=0$ corresponds to the only element $x \in V$; that is, $x=-\frac{1}{2} A^{-1} b$. Finally, if $\Delta>0$, we obtain the equation that a quadratic form in y with positive eigenvalues equals a positive constant; and that is the equation of an ellipsoid.

