Solution of Exercise 5.39.

(i) It is sufficient to prove the inequality under the extra assumption of ||z|| = 1; then it takes the
form
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n H xj <1
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Indeed, consider arbitrary = € R \ {0}; application of the special case to ﬁ:p then gives
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Hence, we encounter the problem of showing that f(z) = ng j<n Tj attains a maximum value

equal to — under the constraint g(z) = ||z — 1 = 0. The method of Lagrange multipliers from
Theorem 5.4.2 now leads to the system of equations, where A € R,

2z H x? = \2x; (1<j<n) and g(x) =0.
1<i<n
i#j

This implies z; = 0, for some 1 < j < n; and then we find the minimum of f. The remaining
flx) _ 2
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has a constant value, for all 1 < j < n, which then must be equal to % in view of g(z) = 0. But

f(z) = -1 under these conditions.

case is that of H1<i<n, it xf = )\; in other words, A, forall 1 < j < n. This implies x

(ii) On the basis of the assumptions we may write ac? = % thus, ||z|? = = di<j<n @i = 1. In

view of part (i) this gives
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n B <1, SO | | a; <a”, hence < | | aj> <a= - g aj.

1<j<n 1<j<n 1<j<n

(iii) Using the notation from Exercise 5.25.(i) we obtain by application of part (ii)

YE— G- A - A< (35— 3 A) =3,

1<5<3
with equality if all sides are of equal length. On the basis of the same exercise we now find
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