Solution of Exercise 5.39.

(i) It is sufficient to prove the inequality under the extra assumption of $\|x\|=1$; then it takes the form

$$
n^{n} \prod_{1 \leq j \leq n} x_{j}^{2} \leq 1
$$

Indeed, consider arbitrary $x \in \mathbf{R}^{n} \backslash\{0\}$; application of the special case to $\frac{1}{\|x\|} x$ then gives

$$
n^{n} \prod_{1 \leq j \leq n} \frac{x_{j}^{2}}{\|x\|^{2 n}} \leq 1
$$

Hence, we encounter the problem of showing that $f(x)=\prod_{1 \leq j \leq n} x_{j}^{2}$ attains a maximum value equal to $\frac{1}{n^{n}}$ under the constraint $g(x)=\|x\|^{2}-1=0$. The method of Lagrange multipliers from Theorem 5.4.2 now leads to the system of equations, where $\lambda \in \mathbf{R}$,

$$
2 x_{j} \prod_{\substack{1 \leq i \leq n \\ i \neq j}} x_{i}^{2}=\lambda 2 x_{j} \quad(1 \leq j \leq n) \quad \text { and } \quad g(x)=0
$$

This implies $x_{j}=0$, for some $1 \leq j \leq n$; and then we find the minimum of f. The remaining case is that of $\prod_{1 \leq i \leq n, i \neq j} x_{i}^{2}=\lambda$; in other words, $\frac{f(x)}{x_{j}^{2}}=\lambda$, for all $1 \leq j \leq n$. This implies x_{j}^{2} has a constant value, for all $1 \leq j \leq n$, which then must be equal to $\frac{1}{n}$ in view of $g(x)=0$. But $f(x)=\frac{1}{n^{n}}$ under these conditions.
(ii) On the basis of the assumptions we may write $x_{j}^{2}=\frac{a_{j}}{a n}$; thus, $\|x\|^{2}=\frac{1}{a n} \sum_{1 \leq j \leq n} a_{j}=1$. In view of part (i) this gives

$$
n^{n} \frac{\prod_{1 \leq j \leq n} a_{j}}{a^{n} n^{n}} \leq 1, \quad \text { so } \quad \prod_{1 \leq j \leq n} a_{j} \leq a^{n}, \quad \text { hence } \quad\left(\prod_{1 \leq j \leq n} a_{j}\right)^{1 / n} \leq a=\frac{1}{n} \sum_{1 \leq j \leq n} a_{j}
$$

(iii) Using the notation from Exercise 5.25.(i) we obtain by application of part (ii)

$$
\sqrt[3]{\left(S-A_{1}\right)\left(S-A_{2}\right)\left(S-A_{3}\right)} \leq \frac{1}{3}\left(3 S-\sum_{1 \leq j \leq 3} A_{j}\right)=\frac{S}{3}
$$

with equality if all sides are of equal length. On the basis of the same exercise we now find

$$
O^{2}=S\left(S-A_{1}\right)\left(S-A_{2}\right)\left(S-A_{3}\right) \leq S \frac{S^{3}}{3^{3}}=\frac{l^{4}}{2^{4} \cdot 3^{3}}, \quad \text { so } \quad O \leq \frac{l^{2}}{12 \sqrt{3}}
$$

