
Solution of Exercise 5.39.

(i) It is sufficient to prove the inequality under the extra assumption of ‖x‖ = 1; then it takes the
form

nn
∏

1≤j≤n

x2
j ≤ 1.

Indeed, consider arbitrary x ∈ Rn \ {0}; application of the special case to 1
‖x‖x then gives

nn
∏

1≤j≤n

x2
j

‖x‖2n
≤ 1.

Hence, we encounter the problem of showing that f(x) =
∏

1≤j≤n x2
j attains a maximum value

equal to 1
nn under the constraint g(x) = ‖x‖2−1 = 0. The method of Lagrange multipliers from

Theorem 5.4.2 now leads to the system of equations, where λ ∈ R,

2xj

∏
1≤i≤n

i6=j

x2
i = λ 2xj (1 ≤ j ≤ n) and g(x) = 0.

This implies xj = 0, for some 1 ≤ j ≤ n; and then we find the minimum of f . The remaining
case is that of

∏
1≤i≤n, i6=j x2

i = λ; in other words, f(x)
x2

j
= λ, for all 1 ≤ j ≤ n. This implies x2

j

has a constant value, for all 1 ≤ j ≤ n, which then must be equal to 1
n in view of g(x) = 0. But

f(x) = 1
nn under these conditions.

(ii) On the basis of the assumptions we may write x2
j = aj

an ; thus, ‖x‖2 = 1
an

∑
1≤j≤n aj = 1. In

view of part (i) this gives

nn

∏
1≤j≤n aj

annn
≤ 1, so

∏
1≤j≤n

aj ≤ an, hence
( ∏

1≤j≤n

aj

)1/n
≤ a =

1
n

∑
1≤j≤n

aj .

(iii) Using the notation from Exercise 5.25.(i) we obtain by application of part (ii)

3
√

(S −A1)(S −A2)(S −A3) ≤
1
3

(
3S −

∑
1≤j≤3

Aj

)
=

S

3
,

with equality if all sides are of equal length. On the basis of the same exercise we now find

O2 = S(S −A1)(S −A2)(S −A3) ≤ S
S3

33
=

l4

24 · 33
, so O ≤ l2

12
√

3
.
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