Solution of Exercise 5.6.

(i) If we introduce the C^{∞} function

$$
g: \mathbf{R}^{n} \rightarrow \mathbf{R} \quad \text { given by } \quad g(x)=\langle A x, x\rangle+\langle b, x\rangle+c,
$$

then $V=g^{-1}(\{0\})$. From Exercise 4.14.(i) and (ii) we know that W is a C^{∞} submanifold of \mathbf{R}^{n} of dimension $n-1$. And from Example 2.2 .5 we obtain

$$
D g(x) \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}\right) \quad \text { is given by } \quad D g(x)=2 A x+b
$$

Therefore the equation for $T_{x} V$ follows from Theorem 5.1.2.
(ii) The result in part (i) immediately gives $x+T_{x} V=\left\{h \in \mathbf{R}^{n} \mid\langle 2 A x+b, h\rangle=\langle 2 A x+b, x\rangle\right\}$ and this implies the first equation. Expansion of the first equation leads to

$$
2(\langle A x, x\rangle+\langle b, x\rangle+c)-\langle b, x\rangle-2 c-\langle 2 A x+b, h\rangle=0
$$

The second formula now follows by using that $g(x)=0$ and multiplying by $-\frac{1}{2}$.

