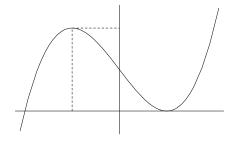
Exercise 0.1 (Family of cubic curves). Define the monic cubic polynomial function

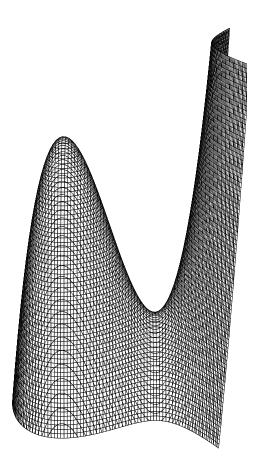
 $p: \mathbf{R} \to \mathbf{R}$ by $p(x) = x^3 - 3x + 2$.

(i) Prove that the extrema of p are a local maximum of value 4 occurring at -1 and a local minimum 0 at 1. Determine the zeros of p and decompose p into a product of linear factors.



Next introduce the cubic polynomial function

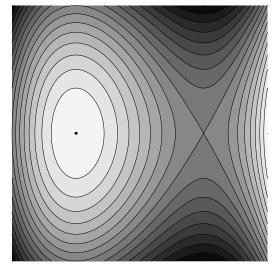
$$g: \mathbf{R}^3 \to \mathbf{R} \qquad \text{by} \qquad g(x) = p(x_1) - x_2^2 - x_3 \qquad \text{and the set} \qquad V = \{ x \in \mathbf{R}^3 \mid g(x) = 0 \}.$$



- (ii) Show that V is a C^{∞} submanifold in \mathbb{R}^3 of dimension 2 by representing it as the graph of a C^{∞} function.
- (iii) Verify again the claim about V as in part (ii), but now by considering Dg(x), for all $x \in V$. Further, prove that (-1, 0, 4) and (1, 0, 0) are the only points of V at which the tangent plane of V is given by the linear subspace $\mathbb{R}^2 \times \{0\}$ of \mathbb{R}^3 .

For every $c \in \mathbf{R}$, define the function

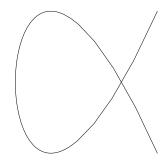
$$g_c : \mathbf{R}^2 \to \mathbf{R}$$
 by $g_c(x_1, x_2) = g(x_1, x_2, c)$ and the set $V_c = \{ x \in \mathbf{R}^2 \mid g_c(x) = 0 \}.$



- (iv) For every $c \in \mathbf{R} \setminus \{0, 4\}$, demonstrate that V_c is a C^{∞} submanifold in \mathbf{R}^2 of dimension 1. Prove that V_0 is a C^{∞} submanifold in \mathbf{R}^2 of dimension 1 in all of its points with the possible exception of (1, 0). Furthermore, using part (i) show that V_4 is the disjoint union of a point (which?) and a C^{∞} submanifold in \mathbf{R}^2 of dimension 1.
- (v) Set $I = [-2, \infty] \subset \mathbb{R}$ and prove by means of part (i) that $V_0 \subset I \times \mathbb{R}$. Next, use this fact to write V_0 as the union of the graphs G_+ and G_- of two distinct functions defined on I that are C^{∞} on the interior of I. Furthermore, derive that $(1,0) \in V_0$ is a point where G_+ and G_- intersect and that $\frac{\pi}{3}$ is the smallest angle between the tangent lines at (1,0) of G_+ and G_- , respectively.
- (vi) From the previous part it follows that every $x \in V_0$ satisfies $x_1 \ge -2$; in this case, therefore, one may write $x_1 = t^2 2$ with $t \in \mathbf{R}$. Deduce $V_0 = \operatorname{im} \phi$, where

 $\phi : \mathbf{R} \to \mathbf{R}^2$ is given by $\phi(t) = (t^2 - 2, t^3 - 3t).$

Verify that ϕ is an embedding on $\mathbf{R} \setminus \{\pm \sqrt{3}\}$.



Finally, suppose that $p : \mathbf{R} \to \mathbf{R}$ is an arbitrary monic cubic polynomial with real coefficients and consider $C = \{ x \in \mathbf{R}^2 \mid p(x_1) = x_2^2 \}.$

(vii) Show that C possesses a singular point only if p has a root at least of multiplicity two. Describe the geometry of C if p has a root of multiplicity three.

Background. Families of curves in \mathbb{R}^2 of the type studied above occur in *number theory* and in the *theory of differential equations*.

Solution of Exercise 0.1

- (i) p'(x) = 3(x² − 1) = 0 implies x = ±1; with corresponding values p(−1) = 4 and p"(−1) = −6, hence a local maximum; and p(1) = 0 and p"(1) = 6, hence a local minimum. Since lim_{x→±∞} p(x) = ±∞, the extrema are not absolute. In view of p(1) = p'(1) = 0, one may write p(x) = (x − 1)²(x − a) = x³ + ··· − a (see Application 3.6.A), which implies a = −2; hence the factorization is p(x) = (x − 1)²(x + 2).
- (ii) g(x) = 0 implies $x_3 = p(x_1) x_2^2$. This leads to $V = \{ (x_1, x_2, p(x_1) x_2^2) \in \mathbb{R}^3 \mid (x_1, x_2) \in \mathbb{R}^2 \}$, displaying V as the graph of a C^{∞} function on \mathbb{R}^2 .
- (iii) Dg(x) = (p'(x₁), -2x₂, -1), and this element in Mat(1×3, R) is of rank 1, for all x ∈ R³; therefore g is submersive on all of R³. The assertion about V now follows from the Submersion Theorem 4.5.2. Furthermore, grad g(x) is perpendicular to T_xV, for any x ∈ V (see Example 5.3.5); hence T_xV = R² × {0} if and only if p'(x₁) = 0, x₂ = 0 and g(x) = 0. But this implies x₁ = ±1, x₂ = 0 and x₃ = p(±1).
- (iv) According to the Submersion Theorem 4.5.2, the set V_c is a a C^{∞} submanifold in \mathbf{R}^2 of dimension 1 in $x \in V_c$ if $Dg_c(x) = (p'(x_1), -2x_2) \neq (0, 0)$ and $c = p(x_1) x_2^2$. That is, V_c possibly does not possess the desired properties at x if

$$x_1 = \pm 1,$$
 $x_2 = 0$ and $c \in \{p(\pm 1)\} = \{0, 4\}.$

If c = 0, and c = 4, only the point $(1,0) \in V_0$, and $(-1,0) \in V_4$, respectively, satisfies all these conditions. Actually, the point (-1,0) is an isolated point of V_4 . Indeed, on the basis of part (i) one finds for $x \in V_4$ sufficiently close to (-1,0) that $4 = p(-1) \ge p(x_1) = x_2^2 + 4$. But this implies $x_2 = 0$ and so $x_1 = -1$.

(v) For $x \in V_0$ one has $0 \le x_2^2 = p(x_1)$, but then part (i) implies $x_1 \ge -2$. Under the latter assumption, the condition $x_2^2 = p(x_1) = (x_1 - 1)^2(x_1 + 2)$ on x is equivalent to

$$x_2 = \pm (x_1 - 1)\sqrt{x_1 + 2} =: f_{\pm}(x_1),$$

where $f_{\pm} : I \to \mathbf{R}$ is a C^{∞} function on the interior of I. Now set $G_{\pm} = \operatorname{graph} f_{\pm}$. Since $f_{\pm}(1) = 0$, one sees $(1,0) \in \bigcap_{+} G_{\pm}$, while f_{\pm} is C^{∞} near 1. Furthermore,

$$Df_{\pm}(x_1) = \pm(\sqrt{x_1+2} + (x_1-1)\cdots),$$
 in particular graph $Df_{\pm}(1) = \mathbf{R}(1, \pm\sqrt{3}).$

Noting that the norms of the two preceding generators of the tangent spaces of G_+ and G_- at (1,0) are equal to 2 and writing α for the angle between these, one gets

$$\cos \alpha = \frac{\langle (1,\sqrt{3}), (1,-\sqrt{3}) \rangle}{\|(1,\sqrt{3})\| \|(1,-\sqrt{3})\|} = \frac{1-3}{2 \cdot 2} = -\frac{1}{2}, \quad \text{that is} \quad \alpha = \frac{2\pi}{3}.$$

It follows that the smallest angle between the tangent lines equals $\pi - \frac{2\pi}{3} = \frac{\pi}{3}$.

(vi) Writing $x_1 = t^2 - 2$ for $x \in V_0$, one finds on the basis of part (i)

$$x_2^2 = p(x_1) = (x_1 - 1)^2 (x_1 + 2) = (t^2 - 3)^2 t^2 = (t^3 - 3t)^2.$$

This implies $V_0 \subset \operatorname{im} \phi$, whereas the reverse implication is a straightforward calculation. $D\phi(t) = (2t, 3(t^2 - 1))$ is of rank 1, for all $t \in \mathbf{R}$; hence ϕ is an immersion on \mathbf{R} . Further, $\phi(t) = \phi(t')$, for t and $t' \in \mathbf{R}$, leads to $t = \pm t'$, hence $t(t^2 - 3) = 0$; therefore $t = \pm \sqrt{3}$ and $t' = \mp \sqrt{3}$. If $t \neq \pm \sqrt{3}$ and $x = \phi(t)$, then $x_1 - 1 \neq 0$, which implies that $\phi(t) = x \mapsto \frac{x_2}{x_1 - 1} = t$ defines a continuous mapping. This demonstrates that ϕ is an embedding on $\mathbf{R} \setminus \{\pm\sqrt{3}\}$.

(vii) If $x \in C$ is a singular point of C, then $p(x_1) = x_2^2$ and $(p'(x_1), -2x_2) = (0, 0)$ imply $x_2 = 0$ and $p(x_1) = p'(x_1) = 0$; in other words, p must possess a root of multiplicity at least two. Suppose $p(x_1) = (x_1 - c)^3$, for some $c \in \mathbf{R}$, then the points of C satisfy the equation $(x_1 - c)^3 = x_2^2$, which is an ordinary cusp as in Example 5.3.8.