
Exercise 0.1 (Family of cubic curves). Define the monic cubic polynomial function

p : R → R by p(x) = x3 − 3x + 2.

(i) Prove that the extrema of p are a local maximum of value 4 occurring at −1 and a local minimum
0 at 1. Determine the zeros of p and decompose p into a product of linear factors.

Next introduce the cubic polynomial function

g : R3 → R by g(x) = p(x1)− x2
2 − x3 and the set V = {x ∈ R3 | g(x) = 0 }.

(ii) Show that V is a C∞ submanifold in R3 of dimension 2 by representing it as the graph of a C∞

function.

(iii) Verify again the claim about V as in part (ii), but now by considering Dg(x), for all x ∈ V .
Further, prove that (−1, 0, 4) and (1, 0, 0) are the only points of V at which the tangent plane of
V is given by the linear subspace R2 × {0} of R3.
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For every c ∈ R, define the function

gc : R2 → R by gc(x1, x2) = g(x1, x2, c) and the set Vc = {x ∈ R2 | gc(x) = 0 }.

(iv) For every c ∈ R \ {0, 4}, demonstrate that Vc is a C∞ submanifold in R2 of dimension 1. Prove
that V0 is a C∞ submanifold in R2 of dimension 1 in all of its points with the possible exception
of (1, 0). Furthermore, using part (i) show that V4 is the disjoint union of a point (which?) and a
C∞ submanifold in R2 of dimension 1.

(v) Set I = [−2,∞ [ ⊂ R and prove by means of part (i) that V0 ⊂ I ×R. Next, use this fact to
write V0 as the union of the graphs G+ and G− of two distinct functions defined on I that are C∞

on the interior of I . Furthermore, derive that (1, 0) ∈ V0 is a point where G+ and G− intersect
and that π

3 is the smallest angle between the tangent lines at (1, 0) of G+ and G−, respectively.

(vi) From the previous part it follows that every x ∈ V0 satisfies x1 ≥ −2; in this case, therefore, one
may write x1 = t2 − 2 with t ∈ R. Deduce V0 = im φ, where

φ : R → R2 is given by φ(t) = (t2 − 2, t3 − 3t).

Verify that φ is an embedding on R \ {±
√

3}.

Finally, suppose that p : R → R is an arbitrary monic cubic polynomial with real coefficients and
consider C = {x ∈ R2 | p(x1) = x2

2 }.

(vii) Show that C possesses a singular point only if p has a root at least of multiplicity two. Describe
the geometry of C if p has a root of multiplicity three.

Background. Families of curves in R2 of the type studied above occur in number theory and in the
theory of differential equations.
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Solution of Exercise 0.1

(i) p′(x) = 3(x2 − 1) = 0 implies x = ±1; with corresponding values p(−1) = 4 and p′′(−1) =
−6, hence a local maximum; and p(1) = 0 and p′′(1) = 6, hence a local minimum. Since
limx→±∞ p(x) = ±∞, the extrema are not absolute. In view of p(1) = p′(1) = 0, one may
write p(x) = (x − 1)2(x − a) = x3 + · · · − a (see Application 3.6.A), which implies a = −2;
hence the factorization is p(x) = (x− 1)2(x + 2).

(ii) g(x) = 0 implies x3 = p(x1)− x2
2. This leads to V = { (x1, x2, p(x1)− x2

2) ∈ R3 | (x1, x2) ∈
R2 }, displaying V as the graph of a C∞ function on R2.

(iii) Dg(x) = (p′(x1),−2x2,−1), and this element in Mat(1×3,R) is of rank 1, for all x ∈ R3; the-
refore g is submersive on all of R3. The assertion about V now follows from the Submersion The-
orem 4.5.2. Furthermore, grad g(x) is perpendicular to TxV , for any x ∈ V (see Example 5.3.5);
hence TxV = R2 × {0} if and only if p′(x1) = 0, x2 = 0 and g(x) = 0. But this implies
x1 = ±1, x2 = 0 and x3 = p(±1).

(iv) According to the Submersion Theorem 4.5.2, the set Vc is a a C∞ submanifold in R2 of dimen-
sion 1 in x ∈ Vc if Dgc(x) = (p′(x1),−2x2) 6= (0, 0) and c = p(x1) − x2

2. That is, Vc possibly
does not possess the desired properties at x if

x1 = ±1, x2 = 0 and c ∈ { p(±1) } = {0, 4}.

If c = 0, and c = 4, only the point (1, 0) ∈ V0, and (−1, 0) ∈ V4, respectively, satisfies all these
conditions. Actually, the point (−1, 0) is an isolated point of V4. Indeed, on the basis of part (i)
one finds for x ∈ V4 sufficiently close to (−1, 0) that 4 = p(−1) ≥ p(x1) = x2

2 + 4. But this
implies x2 = 0 and so x1 = −1.

(v) For x ∈ V0 one has 0 ≤ x2
2 = p(x1), but then part (i) implies x1 ≥ −2. Under the latter

assumption, the condition x2
2 = p(x1) = (x1 − 1)2(x1 + 2) on x is equivalent to

x2 = ±(x1 − 1)
√

x1 + 2 =: f±(x1),

where f± : I → R is a C∞ function on the interior of I . Now set G± = graph f±. Since
f±(1) = 0, one sees (1, 0) ∈

⋂
±G±, while f± is C∞ near 1. Furthermore,

Df±(x1) = ±(
√

x1 + 2 + (x1 − 1) · · · ), in particular graph Df±(1) = R(1,±
√

3).

Noting that the norms of the two preceding generators of the tangent spaces of G+ and G− at
(1,0) are equal to 2 and writing α for the angle between these, one gets

cos α =
〈 (1,

√
3), (1,−

√
3) 〉

‖(1,
√

3)‖ ‖(1,−
√

3)‖
=

1− 3
2 · 2

= −1
2
, that is α =

2π

3
.

It follows that the smallest angle between the tangent lines equals π − 2π
3 = π

3 .

(vi) Writing x1 = t2 − 2 for x ∈ V0, one finds on the basis of part (i)

x2
2 = p(x1) = (x1 − 1)2(x1 + 2) = (t2 − 3)2 t2 = (t3 − 3t)2.

This implies V0 ⊂ im φ, whereas the reverse implication is a straightforward calculation. Dφ(t) =
(2t, 3(t2 − 1)) is of rank 1, for all t ∈ R; hence φ is an immersion on R. Further, φ(t) = φ(t′),
for t and t′ ∈ R, leads to t = ±t′, hence t(t2 − 3) = 0; therefore t = ±

√
3 and t′ = ∓

√
3. If

t 6= ±
√

3 and x = φ(t), then x1 − 1 6= 0, which implies that φ(t) = x 7→ x2
x1−1 = t defines a

continuous mapping. This demonstrates that φ is an embedding on R \ {±
√

3}.

3



(vii) If x ∈ C is a singular point of C, then p(x1) = x2
2 and (p′(x1),−2x2) = (0, 0) imply x2 = 0 and

p(x1) = p′(x1) = 0; in other words, p must possess a root of multiplicity at least two. Suppose
p(x1) = (x1 − c)3, for some c ∈ R, then the points of C satisfy the equation (x1 − c)3 = x2

2,
which is an ordinary cusp as in Example 5.3.8.
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