Exercise 0.1 (Family of cubic curves). Define the monic cubic polynomial function
p:R—R by p(x) = 2% -3z +2.

(i) Prove that the extrema of p are a local maximum of value 4 occurring at —1 and a local minimum

0 at 1. Determine the zeros of p and decompose p into a product of linear factors.

/

Next introduce the cubic polynomial function

g(x) = p(r1) — 55% -3

and the set V={xcR?|g(z)=0}.

g:R* =R by
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(i) Show that V is a C'* submanifold in R? of dimension 2 by representing it as the graph of a C*>

function.
(iii) Verify again the claim about V' as in part (ii), but now by considering Dg(x), for all z € V.
Further, prove that (—1,0,4) and (1,0, 0) are the only points of V" at which the tangent plane of

V is given by the linear subspace R? x {0} of R3.



For every c € R, define the function

ge:R* =R by  ge(r1,22) = g(z1,22,¢)  andtheset V.= {xeR?|g(r) =0}

(iv) Forevery c € R\ {0,4}, demonstrate that V. is a C* submanifold in R? of dimension 1. Prove
that Vj is a C* submanifold in R? of dimension 1 in all of its points with the possible exception
of (1,0). Furthermore, using part (i) show that V} is the disjoint union of a point (which?) and a
C* submanifold in R? of dimension 1.

(v) Set I = [—2,00[ C R and prove by means of part (i) that Vy C I x R. Next, use this fact to
write Vj as the union of the graphs G and G'_ of two distinct functions defined on [ that are C*°
on the interior of I. Furthermore, derive that (1,0) € Vj is a point where G and G_ intersect
and that % is the smallest angle between the tangent lines at (1,0) of G, and G _, respectively.

(vi) From the previous part it follows that every x € V) satisfies 1 > —2; in this case, therefore, one
may write x1 = t2 — 2 with t € R.. Deduce V) = im ¢, where

¢:R—R? isgivenby  o¢(t) = (t? — 2,3 — 3¢).
Verify that ¢ is an embedding on R\ {#+/3}.

Finally, suppose that p : R — R is an arbitrary monic cubic polynomial with real coefficients and
consider C = {z € R? | p(z1) = 23 }.

(vii) Show that C possesses a singular point only if p has a root at least of multiplicity two. Describe
the geometry of C' if p has a root of multiplicity three.

Background. Families of curves in R? of the type studied above occur in number theory and in the
theory of differential equations.



Solution of Exercise 0.1

®

(i)

(iii)

(iv)

)

(vi)

p'(x) = 3(2? — 1) = 0 implies # = +1; with corresponding values p(—1) = 4 and p”(—1) =
—6, hence a local maximum; and p(1) = 0 and p”(1) = 6, hence a local minimum. Since
lim, 100 p(z) = +o00, the extrema are not absolute. In view of p(1) = p/(1) = 0, one may
write p(z) = (z — 1)?(x — a) = 2 + --- — a (see Application 3.6.A), which implies @ = —2;
hence the factorization is p(x) = (z — 1)%(z + 2).

g(z) = 0 implies z3 = p(z1) — x3. This leads to V' = { (z1, 72, p(z1) — 23) € R? | (w1, 22) €
R? }, displaying V as the graph of a C* function on R2.

Dg(x) = (p'(x1), —2x2, —1), and this element in Mat(1 x 3, R) is of rank 1, for all z € R3; the-
refore g is submersive on all of R3. The assertion about V' now follows from the Submersion The-
orem 4.5.2. Furthermore, grad g(z) is perpendicular to 7,,V, for any x € V (see Example 5.3.5);
hence T,V = R? x {0} if and only if p/(z1) = 0, zo = 0 and g(x) = 0. But this implies
x1 = +1, 29 = 0 and 3 = p(£1).

According to the Submersion Theorem 4.5.2, the set V. is a a C° submanifold in R? of dimen-
sion 1in z € V. if Dg.(z) = (p/(x1), —2x2) # (0,0) and ¢ = p(z1) — x3. That is, V. possibly
does not possess the desired properties at x if

x1 = +1, z9 =0 and ce{p(£l)} ={0,4}.

If ¢ = 0, and ¢ = 4, only the point (1,0) € V{, and (—1,0) € Vj, respectively, satisfies all these
conditions. Actually, the point (—1,0) is an isolated point of V}. Indeed, on the basis of part (i)
one finds for x € Vj sufficiently close to (—1,0) that 4 = p(—1) > p(x1) = 23 + 4. But this
implies 2 = 0 and so 1 = —1.

For x € Vj one has 0 < x2 = p(x1), but then part (i) implies z;1 > —2. Under the latter

assumption, the condition 23 = p(z1) = (v1 — 1)®(z1 + 2) on x is equivalent to

xo = £(x1 — D)V +2 =: fo(xy),

where fi : I — R is a C'*° function on the interior of /. Now set G1 = graph fi. Since
f+(1) =0, one sees (1,0) € (). G+, while fy is C near 1. Furthermore,

Dfi(z1)=x(Vx1+2+ (x1—1)---), in particular graph Df4(1) = R(1,£V/3).

Noting that the norms of the two preceding generators of the tangent spaces of G, and G_ at
(1,0) are equal to 2 and writing « for the angle between these, one gets

1 1, - 1—- 1 2
cos o = ((1,v3).(1,-V3)) = 3:—77 that is a="T

(VAL V3~ 22 2 3
It follows that the smallest angle between the tangent lines equals m — %’T = 3.

Writing 1 = t?> — 2 for € V{, one finds on the basis of part (i)
23 = p(z1) = (w1 — 1)*(21 +2) = (> = 3)2 % = (¢* — 31)2.

This implies Vj) C im ¢, whereas the reverse implication is a straightforward calculation. D¢(t) =
(2t,3(t% — 1)) is of rank 1, for all ¢t € R; hence ¢ is an immersion on R. Further, ¢(t) = ¢(t'),
for t and t' € R, leads to t = ¢/, hence t(t> — 3) = 0; therefore t = +v/3 and t/ = F/3. If
t # +v/3 and x = ¢(t), then x1 — 1 # 0, which implies that ¢(t) = z 7127 = tdefines a
continuous mapping. This demonstrates that ¢ is an embedding on R \ {£+/3}.



(vii) If z € C'is a singular point of C, then p(z1) = 22 and (p/(x1), —2x2) = (0,0) imply z2 = 0 and
p(z1) = p/(x1) = 0; in other words, p must possess a root of multiplicity at least two. Suppose
p(z1) = (z1 — ¢)3, for some ¢ € R, then the points of C satisfy the equation (v1 — ¢)? = z3,

which is an ordinary cusp as in Example 5.3.8.



