Exercise 0.1 (Green's first identity by means of Gauss' Divergence Theorem). Consider $B^{2}=$ $\left\{x \in \mathbf{R}^{2} \mid\|x\|<1\right\}$ and $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $g(x)=x_{1}^{2}-x_{2}^{2}$.
(i) Prove

$$
\int_{B^{2}}\|\operatorname{grad} g(x)\|^{2} d x=2 \pi .
$$

(ii) Recall that $\frac{\partial g}{\partial \nu}=\langle\operatorname{grad} g, \nu\rangle$, the derivative in the direction of the outer normal ν to ∂B^{2}, and compute

$$
\int_{\partial B^{2}}\left(g \frac{\partial g}{\partial \nu}\right)(y) d_{1} y
$$

Hint: Use $2\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)^{2}=2 \cos ^{2} 2 \alpha=1+\cos 4 \alpha$.
The equality of the two integrals above is no accident, as we will presently show. To this end, suppose $h: \mathbf{R}^{2} \rightarrow \mathbf{R}$ to be an arbitrary C^{2} function. Note that $h \operatorname{grad} h: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a C^{1} vector field and recall the identity div grad $=\Delta$.
(iii) Prove $\operatorname{div}(h \operatorname{grad} h)=\|\operatorname{grad} h\|^{2}+h \Delta h$.
(iv) Suppose $\Omega \subset \mathbf{R}^{2}$ satisfies the conditions of Gauss' Divergence Theorem. Apply this theorem to verify

$$
\int_{\Omega}(h \Delta h)(x) d x+\int_{\Omega}\|\operatorname{grad} h(x)\|^{2} d x=\int_{\partial \Omega}\left(h \frac{\partial h}{\partial \nu}\right)(y) d_{1} y .
$$

(v) Derive (\star) in part (iv) directly from Green's first identity.
(vi) Show that the equality of the integrals in parts (i) and (ii) follows from (\star) in part (iv).

Solution of Exercise 0.1

(i) We have $\operatorname{grad} g(x)=2\left(x_{1},-x_{2}\right)$ and so $\|\operatorname{grad} g(x)\|^{2}=4\|x\|^{2}$. Introducing polar coordinates (r, α) in $\mathbf{R}^{2} \backslash\left\{\left(x_{1}, 0\right) \in \mathbf{R}^{2} \mid x_{1} \leq 0\right\}$, which leads to a C^{1} change of coordinates, we find

$$
\int_{B^{2}}\|\operatorname{grad} g(x)\|^{2} d x=\int_{-\pi}^{\pi} \int_{0}^{1} 4 r^{3} d r d \alpha=2 \pi\left[r^{4}\right]_{0}^{1}=2 \pi
$$

(ii) $\partial B^{2}=S^{1}$, which implies $\nu(y)=y$. Therefore

$$
\left(g \frac{\partial g}{\partial \nu}\right)(y)=g(y)\left\langle 2\left(y_{1},-y_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=2 g(y)^{2}
$$

Note $S^{1}=\operatorname{im}(\phi)$ with $\phi(\alpha)=(\cos \alpha, \sin \alpha)$. Hence $\omega_{\phi}(\alpha)=\|(-\sin \alpha, \cos \alpha)\|=1$ and so

$$
\int_{\partial B^{2}}\left(g \frac{\partial g}{\partial \nu}\right)(y) d_{1} y=\int_{-\pi}^{\pi} 2\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)^{2} d \alpha=\int_{-\pi}^{\pi}(1+\cos 4 \alpha) d \alpha=2 \pi .
$$

(iii) We have

$$
\operatorname{div}(g \operatorname{grad} g)=\sum_{1 \leq j \leq 2} D_{j}\left(g D_{j} g\right)=\sum_{1 \leq j \leq 2}\left(\left(D_{j} g\right)^{2}+g D_{j}^{2} g\right)=\|\operatorname{grad} g\|^{2}+g \Delta g
$$

(iv) The assertion follows from application of Gauss' Divergence Theorem 7.8.5 to the vector field g grad g; indeed,

$$
\begin{aligned}
\int_{\Omega} \operatorname{div}(g \operatorname{grad} g)(x) d x & =\int_{\partial \Omega}\langle g(y) \operatorname{grad} g(y), \nu(y)\rangle d_{1} y=\int_{\partial \Omega} g(y)\langle\operatorname{grad} g, \nu\rangle(y) d_{1} y \\
& =\int_{\partial \Omega}\left(g \frac{\partial g}{\partial \nu}\right)(y) d_{1} y .
\end{aligned}
$$

(v) Set $f=g$ in Green's first identity

$$
\int_{\Omega}(g \Delta f)(x) d x=\int_{\partial \Omega}\left(g \frac{\partial f}{\partial \nu}\right)(y) d_{n-1} y-\int_{\Omega}\langle\operatorname{grad} f, \operatorname{grad} g\rangle(x) d x
$$

(vi) This follows from $\Delta g=2-2=0$.

