Exercise 0.1 (Application of Implicit Function Theorem). Suppose that $f: \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a C^{∞} function and that there exists a C^{∞} function $g: \mathbf{R} \rightarrow \mathbf{R}$ satisfying

$$
g(0) \neq 0 \quad \text { and } \quad f(x ; 0)=x g(x) \quad(x \in \mathbf{R})
$$

Consider the equation $f(x ; y)=t$, where x and $t \in \mathbf{R}$, while $y \in \mathbf{R}^{n}$.
(i) Prove the existence of an open neighborhood V of 0 in $\mathbf{R}^{n} \times \mathbf{R}$ and of a unique C^{∞} function $\psi: V \rightarrow \mathbf{R}$ such that, for all $(y, t) \in V$

$$
\psi(0)=0 \quad \text { and } \quad f(\psi(y, t) ; y)=t .
$$

(ii) Establish the following formulae, where D_{1} and D_{2} denote differentiation with respect to the variables in \mathbf{R}^{n} and \mathbf{R}, respectively:

$$
D_{1} \psi(0)=-\frac{1}{g(0)} D_{1} f(0 ; 0) \quad \text { and } \quad D_{2} \psi(0)=\frac{1}{g(0)}
$$

Solution of Exercise 0.1

(i) Define $F: \mathbf{R} \times \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$ by $F(x ; y, t)=f(x ; y)-t$. Then F is a C^{∞} function satisfying

$$
F(0 ; 0,0)=f(0 ; 0)=0 \quad \text { and } \quad D_{1} F(0 ; 0,0)=\left.\frac{d}{d x}\right|_{x=0}(x g(x))=g(0) \neq 0
$$

The desired conclusion now follows from the Implicit Function Theorem 3.5.1.
(ii) Furthermore on account of the aforementioned theorem we obtain

$$
D \psi(y, t)=-D_{x} F(\psi(y, t) ; y, t)^{-1} \circ D_{(y, t)} F(\psi(y, t) ; y, t) .
$$

In particular, this is valid for $(\psi(y, t) ; y, t)=(0 ; 0,0)$. We have

$$
D_{(y, t)} F(0 ; 0,0)=\left(D_{y} f(0 ; 0),-1\right) \quad \text { and so } \quad D \psi(0,0)=-\frac{1}{g(0)}\left(D_{1} f(0 ; 0),-1\right)
$$

and this leads to the desired formulae.

