Exercise 0.1 (Invariance of harmonicity under Kelvin transform - sequel to Exercise 2.40). Set $U=\mathbf{R}^{n} \backslash\{0\}$ and define the inversion $\iota: U \rightarrow U$ by $\iota(x)=\frac{1}{\|x\|^{2}} x$.
(i) Compute ι^{2} and deduce that ι is a C^{∞} diffeomorphism.
(ii) Verify that ι preserves the collection of spheres and hyperplanes in U.

Hint: $S \subset \mathbf{R}^{n}$ is a nondegenerate sphere or hyperplane if and only if

$$
S=\left\{x \in \mathbf{R}^{n} \mid a\|x\|^{2}+\langle b, x\rangle+c=0\right\},
$$

where $b \in \mathbf{R}^{n}$ and a and $c \in \mathbf{R}$ satisfy $\|b\|^{2}-4 a c>0$.

The smaller circle is $\left\{x \in \mathbf{R}^{2} \mid 25\|x\|^{2}+\langle(-25,0), x\rangle+4=0\right\}$
(iii) Prove that ι is conformal, see Exercise 5.29. This is the case if and only if the derivative $D \iota(x)$ is a scalar multiple of an orthogonal linear transformation, for all $x \in U$.
Hint: Fix $x \in U$ and select an orthogonal transformation A such that $A x=(\|x\|, 0, \ldots, 0)$. Clearly $\iota=A^{-1} \circ \iota \circ A$, which entails $D \iota(x)=A^{-1} \circ D \iota(A x) \circ A$. Now complete the proof by showing that $D \iota(A x)$ is a scalar multiple of an orthogonal transformation.
(iv) Show that $\operatorname{det} D \iota(x)=-\frac{1}{\|x\|^{2 n}}$, for all $x \in U$.

We define the Kelvin transform $\mathcal{K}: C(U) \rightarrow C(U)$ by

$$
\mathcal{K} f(x)=\|x\|^{2-n} f(\iota(x)) \quad(f \in C(U), x \in U) .
$$

In the following we will verify the assertion that the Kelvin transform of every harmonic function is harmonic again. In particular, applying the assertion with the constant function 1 on U, we find $\Delta\left(\frac{1}{\|\cdot\|^{n-2}}\right)=0$ on U as in Exercise 2.40.(iv) and Example 7.8.4.
First we demonstrate the result for polynomial functions p that are homogeneous of degree $d \in \mathbf{N}_{0}$. From Exercise 2.40.(iv) we recall

$$
\Delta\left(\|\cdot\|^{2-n-2 d} p\right)=\|\cdot\|^{2-n-2 d} \Delta p
$$

(v) Show

$$
\Delta(\mathcal{K} p)=\mathcal{K}\left(\|\cdot\|^{4} \Delta p\right)
$$

(vi) Establish the general case of the assertion for $f \in C^{2}(U)$ by means of the Weierstrass Approximation Theorem on \mathbf{R}^{n}, see Exercises 1.55 and 6.103.

Solution of Exercise 0.1

(i) We have

$$
\|\iota(x)\|=\frac{1}{\|x\|}, \quad \text { hence } \quad \iota^{2}(x)=\iota(\iota(x))=\frac{1}{\frac{1}{\|x\|^{2}}} \frac{1}{\|x\|^{2}} x=x .
$$

This proves that ι is bijective and its own inverse. As the component functions of ι are of class C^{∞}, so is ι and its inverse. This gives the desired result.
(ii) If $x \in U \cap S$, then $c\|\iota(x)\|^{2}+\langle b, \iota(x)\rangle+a=0$.
(iii) To simplify notation we assume that $x=A x=(\|x\|, 0, \ldots, 0)$ as in the Hint and let $h \in \mathbf{R}^{n}$ be sufficiently small. Then a straightforward calculation gives the equality

$$
\iota(x+h)-\iota(x)=\frac{1}{\|x+h\|^{2}}\left(-h_{1}-\frac{\|h\|^{2}}{\|x\|}, h_{2}, \ldots, h_{n}\right) .
$$

Here we used that $\|x+h\|^{2}=\left(\|x\|+h_{1}\right)^{2}+\left\|\left(h_{2}, \ldots, h_{n}\right)\right\|^{2}$. The equality implies that the matrix of $D \iota(A x)$ is diagonal with diagonal $\frac{1}{\|x\|^{2}}(-1,1, \ldots, 1)$.
(iv) The desired formula is an immediate consequence of the preceding argument.
(v) Since Δp is homogeneous of degree $d-2$, we have

$$
\begin{aligned}
\Delta(\mathcal{K} p) & =\Delta\left(x \mapsto\|x\|^{2-n} p\left(\frac{1}{\|x\|^{2}} x\right)\right)=\Delta\left(\|\cdot\|^{2-n-2 d} p\right)=\|\cdot\|^{2-n-2 d} \Delta p \\
& =\|\cdot\|^{2-n} \frac{1}{\|\cdot\|^{4}} \frac{1}{\|\cdot\|^{2(d-2)}} \Delta p=\mathcal{K}\left(\|\cdot\|^{4} \Delta p\right) .
\end{aligned}
$$

(vi) The preceding part shows that the assertion holds for all polynomials (by linearity). On account of the Weierstrass Approximation Theorem arbitrary C^{2} functions can be locally uniformly approximated by polynomials, which establishes the truth of the assertion for such functions.

