Exercise 0.1 (Invariance of harmonicity under Kelvin transform – sequel to Exercise 2.40). Set $U = \mathbf{R}^n \setminus \{0\}$ and define the *inversion* $\iota : U \to U$ by $\iota(x) = \frac{1}{\|x\|^2} x$.

- (i) Compute ι^2 and deduce that ι is a C^{∞} diffeomorphism.
- (ii) Verify that ι preserves the collection of spheres and hyperplanes in U. Hint: $S \subset \mathbb{R}^n$ is a nondegenerate sphere or hyperplane if and only if

$$S = \{ x \in \mathbf{R}^n \mid a \| x \|^2 + \langle b, x \rangle + c = 0 \},\$$

where $b \in \mathbf{R}^n$ and a and $c \in \mathbf{R}$ satisfy $||b||^2 - 4ac > 0$.

The smaller circle is $\{x \in \mathbb{R}^2 \mid 25 ||x||^2 + \langle (-25, 0), x \rangle + 4 = 0 \}$

- (iii) Prove that ι is *conformal*, see Exercise 5.29. This is the case if and only if the derivative Dι(x) is a scalar multiple of an orthogonal linear transformation, for all x ∈ U.
 Hint: Fix x ∈ U and select an orthogonal transformation A such that Ax = (||x||, 0, ..., 0). Clearly ι = A⁻¹ ∘ ι ∘ A, which entails Dι(x) = A⁻¹ ∘ Dι(Ax) ∘ A. Now complete the proof by showing that Dι(Ax) is a scalar multiple of an orthogonal transformation.
- (iv) Show that $\det D\iota(x) = -\frac{1}{\|x\|^{2n}}$, for all $x \in U$.

We define the *Kelvin transform* $\mathcal{K} : C(U) \to C(U)$ by

$$\mathcal{K}f(x) = \|x\|^{2-n} f(\iota(x)) \qquad (f \in C(U), x \in U).$$

In the following we will verify the assertion that the Kelvin transform of every harmonic function is harmonic again. In particular, applying the assertion with the constant function 1 on U, we find $\Delta(\frac{1}{\|\cdot\|^{n-2}}) = 0$ on U as in Exercise 2.40.(iv) and Example 7.8.4.

First we demonstrate the result for polynomial functions p that are homogeneous of degree $d \in \mathbf{N}_0$. From Exercise 2.40.(iv) we recall

$$\Delta(\|\cdot\|^{2-n-2d} p) = \|\cdot\|^{2-n-2d} \Delta p$$

(v) Show

$$\Delta(\mathcal{K}p) = \mathcal{K}(\|\cdot\|^4 \,\Delta p).$$

(vi) Establish the general case of the assertion for $f \in C^2(U)$ by means of the Weierstrass Approximation Theorem on \mathbb{R}^n , see Exercises 1.55 and 6.103.

Solution of Exercise 0.1

(i) We have

$$\|\iota(x)\| = \frac{1}{\|x\|},$$
 hence $\iota^2(x) = \iota(\iota(x)) = \frac{1}{\frac{1}{\|x\|^2}} \frac{1}{\|x\|^2} x = x$

This proves that ι is bijective and its own inverse. As the component functions of ι are of class C^{∞} , so is ι and its inverse. This gives the desired result.

- (ii) If $x \in U \cap S$, then $c \|\iota(x)\|^2 + \langle b, \iota(x) \rangle + a = 0$.
- (iii) To simplify notation we assume that x = Ax = (||x||, 0, ..., 0) as in the Hint and let $h \in \mathbb{R}^n$ be sufficiently small. Then a straightforward calculation gives the equality

$$\iota(x+h) - \iota(x) = \frac{1}{\|x+h\|^2} \Big(-h_1 - \frac{\|h\|^2}{\|x\|}, h_2, \dots, h_n \Big).$$

Here we used that $||x + h||^2 = (||x|| + h_1)^2 + ||(h_2, \ldots, h_n)||^2$. The equality implies that the matrix of $D\iota(Ax)$ is diagonal with diagonal $\frac{1}{||x||^2}(-1, 1, \ldots, 1)$.

- (iv) The desired formula is an immediate consequence of the preceding argument.
- (v) Since Δp is homogeneous of degree d-2, we have

$$\begin{aligned} \Delta(\mathcal{K}p) &= \Delta\left(x \mapsto \|x\|^{2-n} \, p(\frac{1}{\|x\|^2} x)\right) = \Delta(\|\cdot\|^{2-n-2d} \, p) = \|\cdot\|^{2-n-2d} \, \Delta p \\ &= \|\cdot\|^{2-n} \frac{1}{\|\cdot\|^4} \frac{1}{\|\cdot\|^{2(d-2)}} \, \Delta p = \mathcal{K}(\|\cdot\|^4 \, \Delta p). \end{aligned}$$

(vi) The preceding part shows that the assertion holds for all polynomials (by linearity). On account of the Weierstrass Approximation Theorem arbitrary C^2 functions can be locally uniformly approximated by polynomials, which establishes the truth of the assertion for such functions.