Exercise 0.1 (Lambert’s cylindrical projection). In R3 considerthe spheres?, the subsetS of 52,
andthecylinder C?, respectiely givenby

$?={x eR®||x| =1}, S = 52\ {£(0, 0, 1)}, C?’={xeR¥|x+x3=1, |x3| <1).

IntroduceLambert’s cylindrical projection f : S — C? asfollows. Givenx € S, denoteby ¢, the
uniqueline in R3 containingx thatis parallelto theplane{x € R® | x3 = 0} andthatintersectghe
xz-axis. Next define f (x) to bethe point of intersectiorof £, with C? of shortestistanceo x.

(i) Provethatthemappingf is abijectionthatis givenby

X1 X2
fx) = s , X3 ).
x% + x22 \/xf + x%
Give aformulafor theinversef=1: C? — §.

Let V beasubmanifoldn R3 of dimension2 thatis containedn S.

(ii) Verify that £ (V) is asubmanifoldn R3 of dimension2 thatis containedn C? andshaw that vV
and f (V) areof equalarea.

Define
v:]l-ma[x]-11[ - C? by ¥ (a, x3) = (COSw, Sina, x3).

(i) Provethaty is anembeddinghaving anopendensesubsetC of C? asits image.
Definetheunrolling
g:C—]-mn[x]-1,1[CR?
to betheinverseof .

(iv) Show that W and the unrolling g(W) have equalarea,for every submanifoldW in R® of
dimension? thatis containedn C.

(v) Now considerthe specialcaseof V C $? beinga spherical diangle with anglea, thatis, V
is the subsebf 2 boundedby two half greatcirclesin S? whosetangentvectorsat a point of
intersectiorincludeananglex. Onthebasisof parts(ii) and(iv) shav thattheareaof V equals
2« (comparewith Exercise7.13.(i)). Concludethatthe areaof S? is givenby 4.

Solution of Exercise0.1. (i) Supposex € S, thenx? + x5 = 1 — x3 # 0. Furthermoref, =
{(Axl, )\XZ, X3) | LeR } Now

1
,/xf + x%
The point of intersectionof ¢, with C? closestto x is obtainedby taking the plus sign. This

provesthe formulafor f. Furthermoregivenarbitraryy € C?, anelementx € S suchthat
f(x) = y hasto satisfy

(Ax1, Axp, x3) € C? = Va2 +xd) =1 = A=+

X3 = Y3, = Xf+xg=\/l—x32’=\/1—y?2’, — szyj 1—y3,

1



for1 < j < 2. Indeed,suchanx belonggo S, in view of

X2 = 2+ yDHA -y +yi=1

As aconsequence; € S existsandis uniquelydetermined.This establisheshe bijectivity of
f andalsothat

£ = Gayf1— ¥2 vz /1 35 va).

(i) Asiswell-known, up to subset®f negligible area two-dimensionasubmanifolds’ contained

in S areof theform V = ¢(D), with ¢ : D — S? givenby
T T
DC]_T[,T[[X]—E,E[
Notethatwe maytake D to beopenandthat¢ is anembeddingAs in Example7.4.6we see

and ¢ (a, 0) = (CoSx COSH, Sina €osH, sinb).

aregV) =/ cost dadb.
D
Onaccountof f and f~ ! beinga differentiablebijections(on suitableopensubsetof R3) we
seethatqb fo¢: D — C?isanembeddingwhichis givenby
b (a, 0) = (cosa, sina, sind).

fv) = ¢~>(D) is a submanifoldin R® of dimension2 thatis containedin C? becauseof
Corollary4.3.2. Furthermore,

~

—d)(a ) = (—sina, cosx, 0), 2-?(@, 9) = (0,0, cosh),

— X —(a #) = cosf(cosy, sina, 0),

ap 9 . H
oo

6)“ = C0%4.
Thereforef (V) = ¢>(D) implies

area( f(V)) = / cost dadf.
D

(iii) Theassertions adirectconsequencef Exercise3.6on cylindrical coordinates.

(iv) If W C C?,thenW = v/(D), for someD asin part(ii), while

0 ) B
0 (4. x3) = (—sina. cosa, 0). W wxs) =001,
oo 0x X3

0 0 .

_W X _W(a x3) = (cosa, sina, 0), H— X —(a Xx3) ”

dor 0x3 0x3

Thisandthefactthatg(W) = D now yield

aregW) = / dadxs = area(g(W)).
D



(v) We mayassumehatthe greatcirclesintersectat the polesof S2, sincethis canbe achiesed by
applyingarotationof R2, whichis area-preservingNow theimage f (V) is acurvedrectangle
on C? of width « andheight2. Next unroll $? ontheplaneR?, in otherwords,apply g. Then
the curved rectanglewill be mappedto a genuinerectanglein R? of width o and height 2.
Applicationof parts(ii) and(iv) now yieldsthattheareaof V equals2«. In particulay S? is the
sphericaldiangleof angle2s, whichimpliesthatits areais 4.



