Exercise 0.1 (Lambert's cylindrical projection). In \mathbb{R}^3 consider the sphere S^2 , the subset S of S^2 , and the cylinder C^2 , respectively given by

$$S^{2} = \{ x \in \mathbf{R}^{3} \mid ||x|| = 1 \}, \qquad S = S^{2} \setminus \{ \pm (0, 0, 1) \}, \qquad C^{2} = \{ x \in \mathbf{R}^{3} \mid x_{1}^{2} + x_{2}^{2} = 1, |x_{3}| < 1 \}.$$

Introduce Lambert's cylindrical projection $f: S \to C^2$ as follows. Given $x \in S$, denote by ℓ_x the unique line in \mathbb{R}^3 containing x that is parallel to the plane $\{x \in \mathbb{R}^3 \mid x_3 = 0\}$ and that intersects the x_3 -axis. Next define f(x) to be the point of intersection of ℓ_x with C^2 of shortest distance to x.

(i) Prove that the mapping f is a bijection that is given by

$$f(x) = \left(\frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \frac{x_2}{\sqrt{x_1^2 + x_2^2}}, x_3\right).$$

Give a formula for the inverse $f^{-1}: C^2 \to S$.

Let V be a submanifold in \mathbb{R}^3 of dimension 2 that is contained in S.

(ii) Verify that f(V) is a submanifold in \mathbb{R}^3 of dimension 2 that is contained in C^2 and show that V and f(V) are of equal area.

Define

$$\psi:]-\pi, \pi[\times]-1, 1[\to C^2$$
 by $\psi(\alpha, x_3) = (\cos \alpha, \sin \alpha, x_3).$

(iii) Prove that ψ is an embedding having an open dense subset C of C^2 as its image.

Define the unrolling

$$g: C \rightarrow]-\pi, \pi[\times]-1, 1[\subset \mathbf{R}^2$$

to be the inverse of ψ .

- (iv) Show that W and the unrolling g(W) have equal area, for every submanifold W in \mathbb{R}^3 of dimension 2 that is contained in C.
- (v) Now consider the special case of $V \subset S^2$ being a *spherical diangle* with angle α , that is, V is the subset of S^2 bounded by two half great circles in S^2 whose tangent vectors at a point of intersection include an angle α . On the basis of parts (ii) and (iv) show that the area of V equals 2α (compare with Exercise 7.13.(i)). Conclude that the area of S^2 is given by 4π .

Solution of Exercise 0.1. (i) Suppose $x \in S$, then $x_1^2 + x_2^2 = 1 - x_3^2 \neq 0$. Furthermore, $\ell_x = \{(\lambda x_1, \lambda x_2, x_3) \mid \lambda \in \mathbf{R}\}$. Now

$$(\lambda x_1, \lambda x_2, x_3) \in C^2 \qquad \Longrightarrow \qquad \lambda^2 (x_1^2 + x_2^2) = 1 \qquad \Longrightarrow \qquad \lambda = \pm \frac{1}{\sqrt{x_1^2 + x_2^2}}.$$

The point of intersection of ℓ_x with C^2 closest to x is obtained by taking the plus sign. This proves the formula for f. Furthermore, given arbitrary $y \in C^2$, an element $x \in S$ such that f(x) = y has to satisfy

$$x_3 = y_3,$$
 \Longrightarrow $\sqrt{x_1^2 + x_2^2} = \sqrt{1 - x_3^2} = \sqrt{1 - y_3^2},$ \Longrightarrow $x_j = y_j \sqrt{1 - y_3^2},$

for $1 \le j \le 2$. Indeed, such an x belongs to S, in view of

$$||x||^2 = (y_1^2 + y_2^2)(1 - y_3^2) + y_3^2 = 1.$$

As a consequence, $x \in S$ exists and is uniquely determined. This establishes the bijectivity of f and also that

$$f^{-1}(y) = (y_1\sqrt{1-y_3^2}, y_2\sqrt{1-y_3^2}, y_3).$$

(ii) As is well-known, up to subsets of negligible area, two-dimensional submanifolds V contained in S are of the form $V = \phi(D)$, with $\phi: D \to S^2$ given by

$$D \subset]-\pi, \pi [\times] -\frac{\pi}{2}, \frac{\pi}{2} [$$
 and $\phi(\alpha, \theta) = (\cos \alpha \cos \theta, \sin \alpha \cos \theta, \sin \theta).$

Note that we may take D to be open and that ϕ is an embedding. As in Example 7.4.6 we see

$$area(V) = \int_{D} \cos\theta \, d\alpha d\theta.$$

On account of f and f^{-1} being a differentiable bijections (on suitable open subsets of \mathbf{R}^3) we see that $\widetilde{\phi} = f \circ \phi : D \to C^2$ is an embedding, which is given by

$$\widetilde{\phi}(\alpha, \theta) = (\cos \alpha, \sin \alpha, \sin \theta).$$

 $f(V) = \widetilde{\phi}(D)$ is a submanifold in \mathbb{R}^3 of dimension 2 that is contained in C^2 because of Corollary 4.3.2. Furthermore,

$$\frac{\partial \widetilde{\phi}}{\partial \alpha}(\alpha, \theta) = (-\sin \alpha, \cos \alpha, 0), \qquad \frac{\partial \widetilde{\phi}}{\partial \theta}(\alpha, \theta) = (0, 0, \cos \theta),$$

$$\frac{\partial \widetilde{\phi}}{\partial \alpha} \times \frac{\partial \widetilde{\phi}}{\partial \theta}(\alpha, \theta) = \cos \theta(\cos \alpha, \sin \alpha, 0), \qquad \left\| \frac{\partial \widetilde{\phi}}{\partial \alpha} \times \frac{\partial \widetilde{\phi}}{\partial \theta}(\alpha, \theta) \right\| = \cos \theta.$$

Therefore $f(V) = \widetilde{\phi}(D)$ implies

area
$$(f(V)) = \int_D \cos\theta \, d\alpha d\theta$$
.

- (iii) The assertion is a direct consequence of Exercise 3.6 on cylindrical coordinates.
- (iv) If $W \subset C^2$, then $W = \psi(D)$, for some D as in part (ii), while

$$\begin{split} \frac{\partial \psi}{\partial \alpha}(\alpha, x_3) &= (-\sin \alpha, \cos \alpha, 0), & \frac{\partial \psi}{\partial x_3}(\alpha, x_3) &= (0, 0, 1), \\ \frac{\partial \psi}{\partial \alpha} \times \frac{\partial \psi}{\partial x_3}(\alpha, x_3) &= (\cos \alpha, \sin \alpha, 0), & \left\| \frac{\partial \psi}{\partial \alpha} \times \frac{\partial \psi}{\partial x_3}(\alpha, x_3) \right\| &= 1, \end{split}$$

This and the fact that g(W) = D now yield

$$area(W) = \int_D d\alpha dx_3 = area(g(W)).$$

(v) We may assume that the great circles intersect at the poles of S^2 , since this can be achieved by applying a rotation of \mathbf{R}^3 , which is area-preserving. Now the image f(V) is a curved rectangle on C^2 of width α and height 2. Next unroll S^2 on the plane \mathbf{R}^2 , in other words, apply g. Then the curved rectangle will be mapped to a genuine rectangle in \mathbf{R}^2 of width α and height 2. Application of parts (ii) and (iv) now yields that the area of V equals 2α . In particular, S^2 is the spherical diangle of angle 2π , which implies that its area is 4π .