
Exercise 0.1 (Primal and dual problem in the sense of optimization theory). Suppose C ∈ End(Rp)
to be symmetric and positive definite; that is, 〈Cy, y 〉 = 〈 y, Cy 〉 and 〈 y, Cy 〉 ≥ 0 for all y ∈ Rp,
with equality only if y = 0. Furthermore, let n ≤ p and suppose A ∈ Lin(Rn,Rp) to be injective.

(i) Prove that C ∈ Aut(Rp) and that AtCA ∈ End(Rn) is symmetric and positive definite, and
therefore satisfies AtCA ∈ Aut(Rn). (Recall that At ∈ Lin(Rp,Rn) is defined by 〈Aty, x 〉 =
〈 y, Ax 〉, for all y ∈ Rp and x ∈ Rn.)

Let 0 6= a ∈ Rn be fixed and define the quadratic function

P : Rn → R by P (x) =
1
2
〈AtCAx, x 〉 − 〈 a, x 〉.

(ii) For x ∈ Rn, show by means of part (i) that DP (x) = 0 if and only if x satisfies the linear
equation AtCAx = a and that such an x is unique. Conclude that P attains the value p :=
−1

2〈 a, (AtCA)−1a 〉 at its only critical point.

In the sequel it may be used without proof that minx∈Rn P (x) = p. (This fact can be proved using
compactness and consideration of the asymptotic behavior of P (x) as ‖x‖ → ∞.)

Now we come to the main issue of the exercise, namely, the study of the quadratic function

Q : Rp → R given by Q(y) =
1
2
〈C−1y, y 〉, under the constraint Aty = a.

(iii) Demonstrate that, for all y ∈ V := { y ∈ Rp | Aty = a } and x ∈ Rn, we have the following
identity, in which an uncoupled expression occurs at the left-hand side,

Q(y) + P (x) =
1
2
〈C(C−1y −Ax), C−1y −Ax 〉.

Deduce, for y ∈ V and x ∈ Rn, that we have Q(y) ≥ −P (x), with equality if and only if
y = CAx. Using part (ii), show, for all y ∈ V ,

Q(y) ≥ −p = max
x∈Rn

−P (x), and conclude min
y∈V

Q(y) = max
x∈Rn

−P (x).

In other words, the constrained minimum of Q equals the unconstrained maximum of −P . As an
example of a different approach, we now study the preceding problem by introducing the Lagrange
function

L : Rp ×Rn → R with L(y, x) = Q(y)− 〈x, (Aty − a)〉.

(iv) Using L, determine the points y ∈ V where the extrema of Q|V are attained and derive the same
results as in part (iii).

Background. The result above is one of the simplest cases of a duality that plays an important role in
optimization theory. In this manner, the primal problem of minimizing Q under constraints is replaced
by the dual problem of maximizing P .
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Solution of Exercise 0.1

(i) Suppose that Cy = 0, then 〈 y, Cy 〉 = 0, hence y = 0. Accordingly, C is injective and thus
C ∈ Aut(Rp). Next, (AtCA)t = AtCtAtt = AtCA, which proves the symmetry. Further,
assume x ∈ Rn satisfies AtCAx = 0. Then, in view of C being positive definite and A injective,

〈x, AtCAx 〉 = 〈Ax, CAx 〉 = 0 =⇒ Ax = 0 =⇒ x = 0.

Finally, apply the first argument to AtCA.

(ii) The first assertion on DP (x) follows from Corollary 2.4.3.(ii), while the uniqueness of x is a
consequence of AtCA ∈ Aut(Rn). Furthermore,

P ((AtCA)−1x) =
1
2
〈 a, (AtCA)−1a 〉 − 〈 a, (AtCA)−1a 〉.

(iii) For all y ∈ V and x ∈ Rn one obtains, using Aty = a and the positive definiteness of C,

Q(y) + P (x)

=
1
2
〈C−1y, y 〉+

1
2
〈AtCAx, x 〉 − 〈 a, x 〉

=
1
2
〈C(C−1y), C−1y 〉+

1
2
〈CAx,Ax 〉 − 〈Aty, x 〉

=
1
2
〈C(C−1y −Ax), C−1y −Ax 〉+

1
2
〈 y, Ax 〉+

1
2
〈CAx,C−1y 〉 − 〈 y, Ax 〉

=
1
2
〈C(C−1y −Ax), C−1y −Ax 〉 ≥ 0.

Once more on the basis of C being positive definite, one has equality if and only if C−1y−Ax =
0, in other words, y = CAx. In turn, this implies Q(y) ≥ −P (x), for all y ∈ V and x ∈ Rn.
In particular, this is the case if x0 ∈ Rn is the unique element satisfying AtCAx0 = a (see part
(ii)); this implies, for all y ∈ V ,

Q(y) ≥ −P (x0) = max
x∈Rn

−P (x) = − min
x∈Rn

P (x) = −p.

Now consider y0 = CAx0 ∈ Rp. Then Aty0 = AtCAx0 = a, that is, y0 ∈ V ; and the preceding
arguments imply Q(y0) = −P (x0) = −p. This proves miny∈V Q(y) = −p.

(iv) Applying the method of Lagrange multipliers, one obtains that extrema for Q|V occur at points
y ∈ V satisfying

DyL(y, x) = C−1y −Ax = 0 =⇒ y = CAx and a = Aty = AtCAx.

However, for such y and x,

Q(y) =
1
2
〈C−1CAx,CAx 〉 =

1
2
〈Ax,CAx 〉 =

1
2
〈AtCAx, x 〉

= −1
2
〈AtCAx, x 〉+ 〈 a, x 〉 = −P (x).

C−1 being positive definite implies that Q attains a minimum on V ; indeed, the graph of the
restriction of Q to V is the intersection of an elliptic paraboloid and an affine submanifold (if
necessary, use that continuity of the function Q implies that it attains extrema on compact subsets
of V ). Therefore miny∈V Q(y) = −P (x) where x = (AtCA)−1a ∈ Rn. Finally, use part (ii) to
obtain the desired equality.

Background. The method of Lagrange multipliers enables one to obtain the dual quadratic form P ,
given the primal form Q together with its constraint, by explicitly computing the minimal value of Q.
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