Exercise 0.1 (Primal and dual problem in the sense of optimization theory). Suppose $C \in \operatorname{End}\left(\mathbf{R}^{p}\right)$ to be symmetric and positive definite; that is, $\langle C y, y\rangle=\langle y, C y\rangle$ and $\langle y, C y\rangle \geq 0$ for all $y \in \mathbf{R}^{p}$, with equality only if $y=0$. Furthermore, let $n \leq p$ and suppose $A \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$ to be injective.
(i) Prove that $C \in \operatorname{Aut}\left(\mathbf{R}^{p}\right)$ and that $A^{t} C A \in \operatorname{End}\left(\mathbf{R}^{n}\right)$ is symmetric and positive definite, and therefore satisfies $A^{t} C A \in \operatorname{Aut}\left(\mathbf{R}^{n}\right)$. (Recall that $A^{t} \in \operatorname{Lin}\left(\mathbf{R}^{p}, \mathbf{R}^{n}\right)$ is defined by $\left\langle A^{t} y, x\right\rangle=$ $\langle y, A x\rangle$, for all $y \in \mathbf{R}^{p}$ and $x \in \mathbf{R}^{n}$.)

Let $0 \neq a \in \mathbf{R}^{n}$ be fixed and define the quadratic function

$$
P: \mathbf{R}^{n} \rightarrow \mathbf{R} \quad \text { by } \quad P(x)=\frac{1}{2}\left\langle A^{t} C A x, x\right\rangle-\langle a, x\rangle .
$$

(ii) For $x \in \mathbf{R}^{n}$, show by means of part (i) that $D P(x)=0$ if and only if x satisfies the linear equation $A^{t} C A x=a$ and that such an x is unique. Conclude that P attains the value $p:=$ $-\frac{1}{2}\left\langle a,\left(A^{t} C A\right)^{-1} a\right\rangle$ at its only critical point.

In the sequel it may be used without proof that $\min _{x \in \mathbf{R}^{n}} P(x)=p$. (This fact can be proved using compactness and consideration of the asymptotic behavior of $P(x)$ as $\|x\| \rightarrow \infty$.)

Now we come to the main issue of the exercise, namely, the study of the quadratic function

$$
Q: \mathbf{R}^{p} \rightarrow \mathbf{R} \quad \text { given by } \quad Q(y)=\frac{1}{2}\left\langle C^{-1} y, y\right\rangle, \quad \text { under the constraint } \quad A^{t} y=a .
$$

(iii) Demonstrate that, for all $y \in V:=\left\{y \in \mathbf{R}^{p} \mid A^{t} y=a\right\}$ and $x \in \mathbf{R}^{n}$, we have the following identity, in which an uncoupled expression occurs at the left-hand side,

$$
Q(y)+P(x)=\frac{1}{2}\left\langle C\left(C^{-1} y-A x\right), C^{-1} y-A x\right\rangle
$$

Deduce, for $y \in V$ and $x \in \mathbf{R}^{n}$, that we have $Q(y) \geq-P(x)$, with equality if and only if $y=C A x$. Using part (ii), show, for all $y \in V$,

$$
Q(y) \geq-p=\max _{x \in \mathbf{R}^{n}}-P(x), \quad \text { and conclude } \quad \min _{y \in V} Q(y)=\max _{x \in \mathbf{R}^{n}}-P(x) .
$$

In other words, the constrained minimum of Q equals the unconstrained maximum of $-P$. As an example of a different approach, we now study the preceding problem by introducing the Lagrange function

$$
L: \mathbf{R}^{p} \times \mathbf{R}^{n} \rightarrow \mathbf{R} \quad \text { with } \quad L(y, x)=Q(y)-\left\langle x,\left(A^{t} y-a\right)\right\rangle .
$$

(iv) Using L, determine the points $y \in V$ where the extrema of $\left.Q\right|_{V}$ are attained and derive the same results as in part (iii).

Background. The result above is one of the simplest cases of a duality that plays an important role in optimization theory. In this manner, the primal problem of minimizing Q under constraints is replaced by the dual problem of maximizing P.

Solution of Exercise 0.1

(i) Suppose that $C y=0$, then $\langle y, C y\rangle=0$, hence $y=0$. Accordingly, C is injective and thus $C \in \operatorname{Aut}\left(\mathbf{R}^{p}\right)$. Next, $\left(A^{t} C A\right)^{t}=A^{t} C^{t} A^{t t}=A^{t} C A$, which proves the symmetry. Further, assume $x \in \mathbf{R}^{n}$ satisfies $A^{t} C A x=0$. Then, in view of C being positive definite and A injective,

$$
\left\langle x, A^{t} C A x\right\rangle=\langle A x, C A x\rangle=0 \quad \Longrightarrow \quad A x=0 \quad \Longrightarrow \quad x=0
$$

Finally, apply the first argument to $A^{t} C A$.
(ii) The first assertion on $D P(x)$ follows from Corollary 2.4.3.(ii), while the uniqueness of x is a consequence of $A^{t} C A \in \operatorname{Aut}\left(\mathbf{R}^{n}\right)$. Furthermore,

$$
P\left(\left(A^{t} C A\right)^{-1} x\right)=\frac{1}{2}\left\langle a,\left(A^{t} C A\right)^{-1} a\right\rangle-\left\langle a,\left(A^{t} C A\right)^{-1} a\right\rangle
$$

(iii) For all $y \in V$ and $x \in \mathbf{R}^{n}$ one obtains, using $A^{t} y=a$ and the positive definiteness of C,

$$
\begin{aligned}
& Q(y)+P(x) \\
&=\frac{1}{2}\left\langle C^{-1} y, y\right\rangle+\frac{1}{2}\left\langle A^{t} C A x, x\right\rangle-\langle a, x\rangle \\
&=\frac{1}{2}\left\langle C\left(C^{-1} y\right), C^{-1} y\right\rangle+\frac{1}{2}\langle C A x, A x\rangle-\left\langle A^{t} y, x\right\rangle \\
&=\frac{1}{2}\left\langle C\left(C^{-1} y-A x\right), C^{-1} y-A x\right\rangle+\frac{1}{2}\langle y, A x\rangle+\frac{1}{2}\left\langle C A x, C^{-1} y\right\rangle-\langle y, A x\rangle \\
&=\frac{1}{2}\left\langle C\left(C^{-1} y-A x\right), C^{-1} y-A x\right\rangle \geq 0 .
\end{aligned}
$$

Once more on the basis of C being positive definite, one has equality if and only if $C^{-1} y-A x=$ 0 , in other words, $y=C A x$. In turn, this implies $Q(y) \geq-P(x)$, for all $y \in V$ and $x \in \mathbf{R}^{n}$. In particular, this is the case if $x^{0} \in \mathbf{R}^{n}$ is the unique element satisfying $A^{t} C A x^{0}=a$ (see part (ii)); this implies, for all $y \in V$,

$$
Q(y) \geq-P\left(x^{0}\right)=\max _{x \in \mathbf{R}^{n}}-P(x)=-\min _{x \in \mathbf{R}^{n}} P(x)=-p
$$

Now consider $y^{0}=C A x^{0} \in \mathbf{R}^{p}$. Then $A^{t} y^{0}=A^{t} C A x^{0}=a$, that is, $y^{0} \in V$; and the preceding arguments imply $Q\left(y^{0}\right)=-P\left(x^{0}\right)=-p$. This proves $\min _{y \in V} Q(y)=-p$.
(iv) Applying the method of Lagrange multipliers, one obtains that extrema for $\left.Q\right|_{V}$ occur at points $y \in V$ satisfying

$$
D_{y} L(y, x)=C^{-1} y-A x=0 \quad \Longrightarrow \quad y=C A x \quad \text { and } \quad a=A^{t} y=A^{t} C A x
$$

However, for such y and x,

$$
\begin{aligned}
Q(y) & =\frac{1}{2}\left\langle C^{-1} C A x, C A x\right\rangle=\frac{1}{2}\langle A x, C A x\rangle=\frac{1}{2}\left\langle A^{t} C A x, x\right\rangle \\
& =-\frac{1}{2}\left\langle A^{t} C A x, x\right\rangle+\langle a, x\rangle=-P(x)
\end{aligned}
$$

C^{-1} being positive definite implies that Q attains a minimum on V; indeed, the graph of the restriction of Q to V is the intersection of an elliptic paraboloid and an affine submanifold (if necessary, use that continuity of the function Q implies that it attains extrema on compact subsets of V). Therefore $\min _{y \in V} Q(y)=-P(x)$ where $x=\left(A^{t} C A\right)^{-1} a \in \mathbf{R}^{n}$. Finally, use part (ii) to obtain the desired equality.
Background. The method of Lagrange multipliers enables one to obtain the dual quadratic form P, given the primal form Q together with its constraint, by explicitly computing the minimal value of Q.

