Exercise 0.1 (Diffeomorphism from plane onto hyperbolic domain). We want to parametrize the points belonging to the unbounded open set

$$
U=\left\{x \in \mathbf{R}^{2}| | x_{1} x_{2} \mid<1\right\}
$$

by points in all of \mathbf{R}^{2}. Given $x \in U$, note there exists $y \in \mathbf{R}^{2}$ such that

$$
x_{1}^{2} x_{2}^{2}=\frac{y_{1}^{2} y_{2}^{2}}{1+y_{1}^{2} y_{2}^{2}} .
$$

This suggests to consider

$$
\Psi: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \quad \text { given by } \quad \Psi(y)=f_{+}(y) y \quad \text { where } \quad f_{ \pm}(y)=\frac{1}{\sqrt[4]{1 \pm y_{1}^{2} y_{2}^{2}}}
$$

(i) Show that $\Psi: \mathbf{R}^{2} \rightarrow U$ is a C^{∞} diffeomorphism by computing that its inverse $\Phi: U \rightarrow \mathbf{R}^{2}$ satisfies $\Phi(x)=f_{-}(x) x$.
(ii) Prove that $2 y_{j} D_{j} f_{+}(y)=-y_{1}^{2} y_{2}^{2} f_{+}(y)^{5}$, for $1 \leq j \leq 2$. Use this to deduce

$$
D \Psi(y)=\frac{f_{+}(y)^{5}}{2}\left(\begin{array}{rr}
2+y_{1}^{2} y_{2}^{2} & -y_{1}^{3} y_{2} \\
-y_{1} y_{2}^{3} & 2+y_{1}^{2} y_{2}^{2}
\end{array}\right) \quad \text { and } \quad \operatorname{det} D \Psi(y)=f_{+}(y)^{6} .
$$

(iii) Given $y \in \mathbf{R}^{2}$, consider the curves $s \mapsto \Psi\left(s, y_{2}\right)$ and $t \mapsto \Psi\left(y_{1}, t\right)$ in U. Demonstrate that the curves are C^{∞} submanifolds in U of dimension 1. These two submanifolds obviously intersect at the point $\Psi(y)$; show that it is the only point of intersection.
(iv) Verify that the submanifolds from part (iii) are perpendicular at $\Psi(y)$ if and only if $\Psi(y)$ belongs to the intersection of one of the coordinate axes with U.

Solution of Exercise 0.1

(i) Given $x \in U$, consider the equation $x=\Psi(y)$ for $y \in \mathbf{R}^{2}$. If a solution y exists, then $\operatorname{sgn}\left(x_{j}\right)=$ $\operatorname{sgn}\left(y_{j}\right)$, for $1 \leq j \leq 2$. Obviously, $y=0$ is the only solution of $0=\Psi(y)$. So we may assume that either x_{1} or $x_{2} \neq 0$, say $x_{2} \neq 0$. Then $y_{2} \neq 0$ and $\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}$, in other words, $x_{1} y_{2}=x_{2} y_{1}$. Raising the identity $x_{j}=\Psi_{j}(y)$ to the fourth power and taking the indices modulo 2 , we obtain
$x_{j}^{4}=\frac{y_{j}^{4}}{1+y_{1}^{2} y_{2}^{2}}, \quad$ so $\quad y_{j}^{4}=x_{j}^{4}+\left(x_{j} y_{j}\right)^{2}\left(x_{j} y_{j+1}\right)^{2}=x_{j}^{4}+\left(x_{j} y_{j}\right)^{2}\left(x_{j+1} y_{j}\right)^{2}=x_{j}^{4}+\left(x_{1}^{2} x_{2}^{2}\right) y_{j}^{4}$.
In other words,

$$
\left(1-x_{1}^{2} x_{2}^{2}\right) y_{j}^{4}=x_{j}^{4} \quad \text { and so } \quad y_{j}=f_{-}(x) x_{j},
$$

where $f_{-}(x)$ is well-defined because $x \in U$. This proves that there exists a unique solution $y \in \mathbf{R}^{2}$. In other words, the inverse Φ of $\Psi: \mathbf{R}^{2} \rightarrow U$ is as given and Ψ is a bijection with an inverse of class C^{∞}.
(ii) We have

$$
D_{j} f_{+}(y)=D_{j}\left(1+y_{1}^{2} y_{2}^{2}\right)^{-\frac{1}{4}}=-\frac{1}{4}\left(1+y_{1}^{2} y_{2}^{2}\right)^{-\frac{5}{4}} \frac{2 y_{1}^{2} y_{2}^{2}}{y_{j}}=-\frac{y_{1}^{2} y_{2}^{2}}{2 y_{j}} f_{+}(y)^{5} .
$$

Hence the matrix for $D \Psi(y)$ follows from, for $1 \leq i, j \leq 2$,

$$
D_{j} \Psi_{i}(y)=\delta_{i j} f_{+}(y)+D_{j} f_{+}(y) y_{i}=\frac{f_{+}(y)^{5}}{2}\left(2 \delta_{i j}\left(1+y_{1}^{2} y_{2}^{2}\right)-\frac{y_{i} y_{1}^{2} y_{2}^{2}}{y_{j}}\right)
$$

This implies

$$
\operatorname{det} D \Psi(y)=\frac{f_{+}(y)^{10}}{4}\left(4+4 y_{1}^{2} y_{2}^{2}\right)=f_{+}(y)^{6}
$$

(iii) All assertions are a direct consequence of the fact that Ψ is a C^{∞} diffeomorphism.
(iv) The curves intersect orthogonally at $\Psi(y)$ if and only if the cosine of the angle of intersection is equal to zero. Modulo a strictly positive factor, this cosine is given by

$$
\left\langle D_{1} \Psi(y), D_{2} \Psi(y)\right\rangle=-\frac{f_{+}(y)^{10}}{4}\left(2+y_{1}^{2} y_{2}^{2}\right)\|y\|^{2} y_{1} y_{2} .
$$

Hence it equals zero if and only if $y_{1} y_{2}=0$, and this is the case if and only if $\Psi(y)$ belongs to one of the coordinate axes.

