Exercise 0.1 (Diffeomorphism from plane onto hyperbolic domain). We want to parametrize the points belonging to the unbounded open set

$$U = \{ x \in \mathbf{R}^2 \mid |x_1 x_2| < 1 \}$$

by points in all of \mathbb{R}^2 . Given $x \in U$, note there exists $y \in \mathbb{R}^2$ such that

$$x_1^2 x_2^2 = \frac{y_1^2 y_2^2}{1 + y_1^2 y_2^2}$$

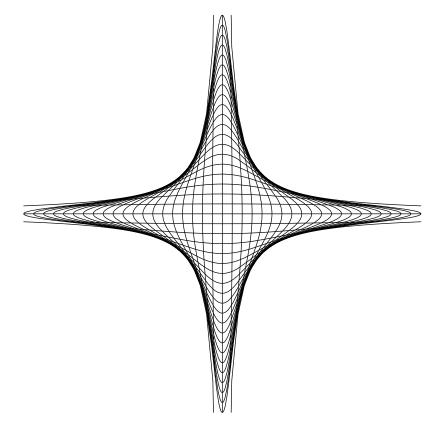
This suggests to consider

 $\Psi: \mathbf{R}^2 \to \mathbf{R}^2$ given by $\Psi(y) = f_+(y) y$ where $f_{\pm}(y) = \frac{1}{\sqrt[4]{1 \pm y_1^2 y_2^2}}$.

- (i) Show that $\Psi : \mathbf{R}^2 \to U$ is a C^{∞} diffeomorphism by computing that its inverse $\Phi : U \to \mathbf{R}^2$ satisfies $\Phi(x) = f_{-}(x) x$.
- (ii) Prove that $2y_j D_j f_+(y) = -y_1^2 y_2^2 f_+(y)^5$, for $1 \le j \le 2$. Use this to deduce

$$D\Psi(y) = \frac{f_+(y)^5}{2} \begin{pmatrix} 2+y_1^2y_2^2 & -y_1^3y_2 \\ -y_1y_2^3 & 2+y_1^2y_2^2 \end{pmatrix} \quad \text{and} \quad \det D\Psi(y) = f_+(y)^6.$$

- (iii) Given $y \in \mathbf{R}^2$, consider the curves $s \mapsto \Psi(s, y_2)$ and $t \mapsto \Psi(y_1, t)$ in U. Demonstrate that the curves are C^{∞} submanifolds in U of dimension 1. These two submanifolds obviously intersect at the point $\Psi(y)$; show that it is the only point of intersection.
- (iv) Verify that the submanifolds from part (iii) are perpendicular at $\Psi(y)$ if and only if $\Psi(y)$ belongs to the intersection of one of the coordinate axes with U.



Solution of Exercise 0.1

(i) Given $x \in U$, consider the equation $x = \Psi(y)$ for $y \in \mathbb{R}^2$. If a solution y exists, then $\operatorname{sgn}(x_j) = \operatorname{sgn}(y_j)$, for $1 \le j \le 2$. Obviously, y = 0 is the only solution of $0 = \Psi(y)$. So we may assume that either x_1 or $x_2 \ne 0$, say $x_2 \ne 0$. Then $y_2 \ne 0$ and $\frac{x_1}{x_2} = \frac{y_1}{y_2}$, in other words, $x_1y_2 = x_2y_1$. Raising the identity $x_j = \Psi_j(y)$ to the fourth power and taking the indices modulo 2, we obtain

$$x_j^4 = \frac{y_j^4}{1 + y_1^2 y_2^2}, \qquad \text{so} \qquad y_j^4 = x_j^4 + (x_j y_j)^2 (x_j y_{j+1})^2 = x_j^4 + (x_j y_j)^2 (x_{j+1} y_j)^2 = x_j^4 + (x_1^2 x_2^2) y_j^4.$$

In other words,

 $(1 - x_1^2 x_2^2) y_j^4 = x_j^4$ and so $y_j = f_-(x) x_j$,

where $f_{-}(x)$ is well-defined because $x \in U$. This proves that there exists a unique solution $y \in \mathbf{R}^2$. In other words, the inverse Φ of $\Psi : \mathbf{R}^2 \to U$ is as given and Ψ is a bijection with an inverse of class C^{∞} .

(ii) We have

$$D_j f_+(y) = D_j (1 + y_1^2 y_2^2)^{-\frac{1}{4}} = -\frac{1}{4} (1 + y_1^2 y_2^2)^{-\frac{5}{4}} \frac{2y_1^2 y_2^2}{y_j} = -\frac{y_1^2 y_2^2}{2y_j} f_+(y)^5.$$

Hence the matrix for $D\Psi(y)$ follows from, for $1 \le i, j \le 2$,

$$D_{j}\Psi_{i}(y) = \delta_{ij} f_{+}(y) + D_{j}f_{+}(y) y_{i} = \frac{f_{+}(y)^{5}}{2} \Big(2\delta_{ij} \left(1 + y_{1}^{2}y_{2}^{2}\right) - \frac{y_{i}y_{1}^{2}y_{2}^{2}}{y_{j}} \Big).$$

This implies

$$\det D\Psi(y) = \frac{f_+(y)^{10}}{4}(4+4y_1^2y_2^2) = f_+(y)^6.$$

- (iii) All assertions are a direct consequence of the fact that Ψ is a C^{∞} diffeomorphism.
- (iv) The curves intersect orthogonally at $\Psi(y)$ if and only if the cosine of the angle of intersection is equal to zero. Modulo a strictly positive factor, this cosine is given by

$$\langle D_1 \Psi(y), D_2 \Psi(y) \rangle = -\frac{f_+(y)^{10}}{4} (2 + y_1^2 y_2^2) ||y||^2 y_1 y_2.$$

Hence it equals zero if and only if $y_1y_2 = 0$, and this is the case if and only if $\Psi(y)$ belongs to one of the coordinate axes.