
Exercise 0.1 (Geometry of quadratic equation). In this exercise we consider the polynomial function
p(x, y) = x2+2y1x+y2 in the real variable x with real coefficients 2y1 and y2 as a function p : R3 → R

of all three variables simultaneously, thus

p : R × R
2 ' R

3 → R given by p(x, y) = x2 + 2y1x + y2.

Various properties of the quadratic equation can be read off from geometric properties of the zero-set

N = { (x, y) ∈ R × R
2 | p(x, y) = 0 },

and vice versa. Figure 1 below shows the smooth surface N in R
3 ; such a surface is called a hyperbolic

paraboloid.

x-axis

y1-axis

y2-axis

Figure 1: Hyperbolic paraboloid

In turn, the illustration immediately raises new questions: we see that N contains downward parabolae
in planes perpendicular to the y1-axis as well as hyperbolae in planes perpendicular to the y2-axis. In
this exercise we will study these more closely. We begin by surveying some of the well-known algebraic
aspects.

(i) Prove
p(x, y) = (x + y1)

2 − ∆(y) where ∆(y) = y2
1 − y2;

in fact, ∆ : R2 → R is the discriminant of the quadratic equation. Now suppose that (x, y) ∈ R
3

satisfies p(x, y) = 0. Deduce that

(?) ∆(y) = (x + y1)
2 ≥ 0

and that there exist at most two distinct solutions x to p(x, y) = 0. Furthermore, conclude that x

is a solution of multiplicity 2 of p(x, y) = 0 if and only if

(x, y1) ∈ S := { (x, y1) ∈ R
2 | x + y1 = 0 }.
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(ii) Verify that N = im(φ) where

φ : R2 → R
3 is defined by φ(x, y1) = (x, y1,−x2 − 2y1x).

Deduce that N is a C∞ submanifold in R
3 of dimension 2.

(iii) Compute the rank of Dp(x, y) ∈ Lin(R3,R), for all (x, y) ∈ R
3. Now prove once more, but

by a method different from the one employed in part (ii), that N is a C∞ submanifold in R
3 of

dimension 2.

Denote by π : R × R
2 → R

2 the orthogonal projection π(x, y) = y and define

Φ = π ◦ φ : R2 → R
2; i.e., Φ(x, y1) =

(

y1

−x2 − 2y1x

)

.

(iv) Compute DΦ(x, y1) ∈ End(R2) as well as det DΦ(x, y1). Show that the set of singular points
of Φ is equal to the straight line S as defined in part (i). Verify that the rank of DΦ(x, y1) is equal
to 1, for all (x, y1) ∈ S.

In Figure 2 below we see the image set of Φ. Obviously, it has been obtained by projection of the
surface from Figure 1 onto the y-plane.

Figure 2: im(Φ)

(v) Prove that the image Φ(S) ⊂ R
2 equals the upward parabola (in the notation from part (i))

P = { y ∈ R
2 | ∆(y) = 0 }.

Furthermore, verify
Φ(R2 \ S) = { y ∈ R

2 | ∆(y) > 0 };
in other words, this image consists of the open subset of R

2 consisting of elements lying below
the parabola P . Prove also on the basis of part (i) that Φ−1({y}) ⊂ R

2 always consists of two
elements if y ∈ Φ(R2 \ S). Translate these results into an assertion about the intersection of N

by straight lines parallel to the x-axis.
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(vi) On the basis of part (v) show that φ(S) = π−1(P ) and also that this set equals the space curve

Σ = im(σ) ⊂ N with σ : R → R
3 given by σ(x) = (x,−x, x2).

In Figure 3 below we see the plane curve Σ. Prove

Σ = { (x, y) ∈ R × R
2 | p(x, y) = D1p(x, y) = 0 }.

S

S

P

Figure 3: The straight line S, the plane curve Σ and the parabola P

(vii) Verify that the intersection of N with a plane { (x, y) ∈ R × R
2 | y1 is constant } (i.e., a plane

perpendicular to the y1-as) is a downward parabola having its vertex at the point σ(−y1).

(viii) Give a parametrization of the geometric tangent line Λ(x) of the curve Σ at the point σ(x), for
every x ∈ R.

In the Figures 1 and 4 we also see straight lines running on the surface N in planes that appear to be
perpendicular to the x-axis. We will prove the existence of such lines. To this end, let x ∈ R be fixed
and define N(x) to be the orthogonal projection of Λ(x) onto the plane { (x, y) ∈ R

3 | y ∈ R
2 } (that

is, the plane passing through σ(x) and perpendicular to the x-axis).

(ix) Verify that N(x) is the straight line σ(x) + R(0,−1, 2x) and that the surface N is the disjoint
union of the lines N(x), for all x ∈ R. Show that every line N(x) intersects the curve Σ in
exactly one point.

Background. Given x ∈ R, the line N(x) parametrizes all quadratic equations with prescribed zero x

while σ(x) represents the unique quadratic equation having the zero x occurring with multiplicity two.
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Figure 4

(x) Introduce the numbers ϕ± = 1

2
(1 ±

√
5) and note that ϕ+ equals the golden ratio satisfying

−ϕ+ϕ− = 1. Next define the matrices

O =
1
4
√

5

( √
ϕ+

√−ϕ−√−ϕ− −√
ϕ+

)

, A =
( 1 1

1 0

)

, D =
(

ϕ+ 0
0 ϕ−

)

.

Show that O is both symmetric and orthogonal, while

OtAO = D.

In addition, introduce new coordinates z in R
3 by means of

(

z1

z2

)

= Ot

(

x

y1

)

and z3 = y2,
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and deduce using Formula (2.29)

x2 + 2y1x + y2 = ϕ+z2
1 + ϕ−z2

2 + z3 =
1

2
(
√

5 + 1)z2
1 − 1

2
(
√

5 − 1)z2
2 + z3.

Recall the classification of quadrics as discussed in linear algebra and conclude that the quadric
N is a hyperbolic paraboloid.

Solution of Exercise 0.1

(i) We have
p(x, y) = x2 + 2y1x + y2

1 − (y2
1 − y2) = (x + y1)

2 − ∆(y).

If p(x, y) = 0 then the assertion of (?) is obvious as squares are nonnegative. It follows that
every solution x ∈ R of p(x, y) = 0 is given by x± = −y1 ±

√

∆(y); accordingly, maximally
two do exist. Obviously x+ = x− if and only if ∆(y) = 0; hence, the final assertion is a direct
consequence of (?).

(ii) The equality p(x, y) = 0 is equivalent with y2 = −x2 − 2y1x, which shows that N = im(φ).
Furthermore, N = graph(f) where f : R2 → R with f(x, y1) = −x2−2y1x is a C∞ function;
therefore N is a C∞ submanifold of R

3 of dimension 2 on the basis of Definition 4.2.1.

(iii) The identity Dp(x, y) = (∗, ∗, 1) shows that the rank of Dp(x, y) equals 1 everywhere; in other
words, Dp(x, y) is surjective, for all (x, y) ∈ R

3. Hence the second assertion is a direct conse-
quence of the Submersion Theorem 4.5.2.

(iv) Differentiation immediately yields the following formulae:

DΦ(x, y1) =

(

0 1
−2x − 2y1 −2x

)

and det DΦ(x, y1) = 2(x + y1).

By definition, the determinant vanishes at singular points. Hence, the identification of the set of
singular points with S follows directly, whereas the equation above obviously is that of a straight
line. The assertion on the rank of DΦ(x, y1), for (x, y1) ∈ S, follows from the fact that in this
case

DΦ(x, y1) =

(

0 1
0 ∗

)

.

(v) Suppose (x, y) ∈ R
3 satisfies Φ(x, y1) = y. Then, in particular, we have p(x, y) = 0 and so we

obtain from (?) in part (i) that ∆(y) ≥ 0. Hence the inclusions Φ(S) ⊂ P and Φ(R2\S) ⊂ { y ∈
R

2 | ∆(y) > 0 } are obvious on the basis of (?) again. Now we prove the reverse inclusions.
According to part (i) the condition ∆(y) = 0 on y ∈ R

2 ensures that there is a unique solution
x ∈ R for p(x, y) = 0, i.e., y = Φ(x, y1); furthermore, (?) then implies that (x, y1) ∈ S. Next,
suppose y ∈ R

2 satisfies ∆(y) > 0. From part (i) we then obtain the existence of two different
solutions x± of the equation p(x, y) = 0, and this gives two distinct elements (x±, y1) ∈ R

2 both
belonging to Φ−1({y}). Using (?) once more, we actually get (x±, y1) ∈ R

2 \ S. In geometric
terms, lines in R

3 parallel to the x-axis, which means being of the form { (x, y) ∈ R
3 | x ∈ R },

intersect the surface N once, and twice, if ∆(y) is 0, and positive, respectively, and in no other
case.

(vi) By definition Φ = π ◦ φ; hence, we obtain π−1 ◦ Φ = φ (abusing the notation for the inverse
image). Application of this identity to the set S gives the equality φ(S) = π−1(P ). Next, suppose
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(x, y1) ∈ S, in other words, y1 = −x. Then φ(x, y1) = (x,−x, y2) ∈ φ(S) = π−1(P ) implies
y2 = x2. Accordingly

φ(x, y1) = (x,−x, x2) = σ(x), that is, φ(S) ⊂ Σ.

Conversely, (x, y) ∈ Σ implies

(x, y) = σ(x) = (x,−x, x2) = φ(x,−x), i.e., Σ ⊂ φ(S).

Now the last assertion. (x, y) ∈ Σ means that x is a solution of p(X, y) = (X − x)2 =
X2 − 2xX + x2 = 0, and as a consequence x is a solution of D1p(X, y) = 2(X − x) too.
Accordingly, p(x, y) = D1p(x, y) = 0. Conversely, suppose (x, y) ∈ R

3 satisfies p(x, y) = 0
and D1p(x, y) = 2(x + y1) = 0; hence, in particular, y1 = −x. Hence (x, y) ∈ φ(S) = Σ.

(vii) If y1 is fixed and p(x, y) = 0, we get from (?) in part (i)

y2 = y2
1 − ∆(y) = y2

1 − (x + y1)
2.

The right-hand side is maximal if x+y1 = 0 and if this is the case it assumes the value y2
1 . Hence

the vertex of the parabola has coordinates (−y1, y1, y
2
1) = σ(−y1) and it also opens downward.

(viii) In view of Dσ(x) = (1,−1, 2x), a parametric representation for Λ(x) is given by σ(x) +
R(1,−1, 2x).

(ix) (0,−1, 2x) is the orthogonal projection of Dσ(x) onto the (y1, y2)-plane along the x-axis; hence,
N(x) may be described as given. By definition, the lines N(x) are disjoint, for distinct x ∈ R.
Furthermore, consider (x, y) ∈ N(x), that is, satisfying y1 = −x − λ and y2 = x2 + 2λx, for
some λ ∈ R. Then (x, y) ∈ N as follows from

p(x, y) = x2 + 2y1x + y2 = x2 − 2(x + λ)x + x2 + 2λx = 0.

Accordingly, every N(x) is contained in N . Conversely, suppose x ∈ R is fixed and (x, y) ∈ R
3

belongs to N . Then there exists λ ∈ R such that y1 = −x − λ, while p(x, y) = 0 now implies

y2 = −x2 − 2y1x = x2 + 2λx; i.e., (x, y) ∈ N(x).

The equality N(x) = σ(x)+R(0,−1, 2x) implies that N(x) intersects Σ in σ(x), and this is the
only point of intersection as the elements of Σ are uniquely determined by their first component.

(x) Straightforward computation. The quadric N is a hyperbolic paraboloid since the corresponding
quadratic form has two nonzero eigenvalues of opposite sign as well as a linear term.
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