Exercise 0.1 (Geometry of quadratic equation). In this exercise we consider the polynomial function $p(x, y)=x^{2}+2 y_{1} x+y_{2}$ in the real variable x with real coefficients $2 y_{1}$ and y_{2} as a function $p: \mathbf{R}^{3} \rightarrow \mathbf{R}$ of all three variables simultaneously, thus

$$
p: \mathbf{R} \times \mathbf{R}^{2} \simeq \mathbf{R}^{3} \rightarrow \mathbf{R} \quad \text { given by } \quad p(x, y)=x^{2}+2 y_{1} x+y_{2} .
$$

Various properties of the quadratic equation can be read off from geometric properties of the zero-set

$$
N=\left\{(x, y) \in \mathbf{R} \times \mathbf{R}^{2} \mid p(x, y)=0\right\},
$$

and vice versa. Figure 1 below shows the smooth surface N in \mathbf{R}^{3}; such a surface is called a hyperbolic paraboloid.

Figure 1: Hyperbolic paraboloid
In turn, the illustration immediately raises new questions: we see that N contains downward parabolae in planes perpendicular to the y_{1}-axis as well as hyperbolae in planes perpendicular to the y_{2}-axis. In this exercise we will study these more closely. We begin by surveying some of the well-known algebraic aspects.
(i) Prove

$$
p(x, y)=\left(x+y_{1}\right)^{2}-\Delta(y) \quad \text { where } \quad \Delta(y)=y_{1}^{2}-y_{2} ;
$$

in fact, $\Delta: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is the discriminant of the quadratic equation. Now suppose that $(x, y) \in \mathbf{R}^{3}$ satisfies $p(x, y)=0$. Deduce that
$(\star) \quad \Delta(y)=\left(x+y_{1}\right)^{2} \geq 0$
and that there exist at most two distinct solutions x to $p(x, y)=0$. Furthermore, conclude that x is a solution of multiplicity 2 of $p(x, y)=0$ if and only if

$$
\left(x, y_{1}\right) \in S:=\left\{\left(x, y_{1}\right) \in \mathbf{R}^{2} \mid x+y_{1}=0\right\} .
$$

(ii) Verify that $N=\operatorname{im}(\phi)$ where

$$
\phi: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} \quad \text { is defined by } \quad \phi\left(x, y_{1}\right)=\left(x, y_{1},-x^{2}-2 y_{1} x\right) .
$$

Deduce that N is a C^{∞} submanifold in \mathbf{R}^{3} of dimension 2.
(iii) Compute the rank of $D p(x, y) \in \operatorname{Lin}\left(\mathbf{R}^{3}, \mathbf{R}\right)$, for all $(x, y) \in \mathbf{R}^{3}$. Now prove once more, but by a method different from the one employed in part (ii), that N is a C^{∞} submanifold in \mathbf{R}^{3} of dimension 2.

Denote by $\pi: \mathbf{R} \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ the orthogonal projection $\pi(x, y)=y$ and define

$$
\Phi=\pi \circ \phi: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} ; \quad \text { i.e., } \quad \Phi\left(x, y_{1}\right)=\binom{y_{1}}{-x^{2}-2 y_{1} x} .
$$

(iv) Compute $D \Phi\left(x, y_{1}\right) \in \operatorname{End}\left(\mathbf{R}^{2}\right)$ as well as $\operatorname{det} D \Phi\left(x, y_{1}\right)$. Show that the set of singular points of Φ is equal to the straight line S as defined in part (i). Verify that the rank of $D \Phi\left(x, y_{1}\right)$ is equal to 1 , for all $\left(x, y_{1}\right) \in S$.

In Figure 2 below we see the image set of Φ. Obviously, it has been obtained by projection of the surface from Figure 1 onto the y-plane.

Figure 2: $\operatorname{im}(\Phi)$
(v) Prove that the image $\Phi(S) \subset \mathbf{R}^{2}$ equals the upward parabola (in the notation from part (i))

$$
P=\left\{y \in \mathbf{R}^{2} \mid \Delta(y)=0\right\} .
$$

Furthermore, verify

$$
\Phi\left(\mathbf{R}^{2} \backslash S\right)=\left\{y \in \mathbf{R}^{2} \mid \Delta(y)>0\right\}
$$

in other words, this image consists of the open subset of \mathbf{R}^{2} consisting of elements lying below the parabola P. Prove also on the basis of part (i) that $\Phi^{-1}(\{y\}) \subset \mathbf{R}^{2}$ always consists of two elements if $y \in \Phi\left(\mathbf{R}^{2} \backslash S\right)$. Translate these results into an assertion about the intersection of N by straight lines parallel to the x-axis.
(vi) On the basis of part (v) show that $\phi(S)=\pi^{-1}(P)$ and also that this set equals the space curve

$$
\Sigma=\operatorname{im}(\sigma) \subset N \quad \text { with } \quad \sigma: \mathbf{R} \rightarrow \mathbf{R}^{3} \quad \text { given by } \quad \sigma(x)=\left(x,-x, x^{2}\right) .
$$

In Figure 3 below we see the plane curve Σ. Prove

$$
\Sigma=\left\{(x, y) \in \mathbf{R} \times \mathbf{R}^{2} \mid p(x, y)=D_{1} p(x, y)=0\right\}
$$

Figure 3: The straight line S, the plane curve Σ and the parabola P
(vii) Verify that the intersection of N with a plane $\left\{(x, y) \in \mathbf{R} \times \mathbf{R}^{2} \mid y_{1}\right.$ is constant $\}$ (i.e., a plane perpendicular to the y_{1}-as) is a downward parabola having its vertex at the point $\sigma\left(-y_{1}\right)$.
(viii) Give a parametrization of the geometric tangent line $\Lambda(x)$ of the curve Σ at the point $\sigma(x)$, for every $x \in \mathbf{R}$.

In the Figures 1 and 4 we also see straight lines running on the surface N in planes that appear to be perpendicular to the x-axis. We will prove the existence of such lines. To this end, let $x \in \mathbf{R}$ be fixed and define $N(x)$ to be the orthogonal projection of $\Lambda(x)$ onto the plane $\left\{(x, y) \in \mathbf{R}^{3} \mid y \in \mathbf{R}^{2}\right\}$ (that is, the plane passing through $\sigma(x)$ and perpendicular to the x-axis).
(ix) Verify that $N(x)$ is the straight line $\sigma(x)+\mathbf{R}(0,-1,2 x)$ and that the surface N is the disjoint union of the lines $N(x)$, for all $x \in \mathbf{R}$. Show that every line $N(x)$ intersects the curve Σ in exactly one point.

Background. Given $x \in \mathbf{R}$, the line $N(x)$ parametrizes all quadratic equations with prescribed zero x while $\sigma(x)$ represents the unique quadratic equation having the zero x occurring with multiplicity two.

Figure 4
(x) Introduce the numbers $\varphi_{ \pm}=\frac{1}{2}(1 \pm \sqrt{5})$ and note that φ_{+}equals the golden ratio satisfying $-\varphi_{+} \varphi_{-}=1$. Next define the matrices

$$
O=\frac{1}{\sqrt[4]{5}}\left(\begin{array}{ll}
\sqrt{\varphi_{+}} & \sqrt{-\varphi_{-}} \\
\sqrt{-\varphi_{-}} & -\sqrt{\varphi_{+}}
\end{array}\right), \quad A=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right), \quad D=\left(\begin{array}{cc}
\varphi_{+} & 0 \\
0 & \varphi_{-}
\end{array}\right) .
$$

Show that O is both symmetric and orthogonal, while

$$
O^{t} A O=D
$$

In addition, introduce new coordinates z in \mathbf{R}^{3} by means of

$$
\binom{z_{1}}{z_{2}}=O^{t}\binom{x}{y_{1}} \quad \text { and } \quad z_{3}=y_{2}
$$

and deduce using Formula (2.29)

$$
x^{2}+2 y_{1} x+y_{2}=\varphi_{+} z_{1}^{2}+\varphi_{-} z_{2}^{2}+z_{3}=\frac{1}{2}(\sqrt{5}+1) z_{1}^{2}-\frac{1}{2}(\sqrt{5}-1) z_{2}^{2}+z_{3} .
$$

Recall the classification of quadrics as discussed in linear algebra and conclude that the quadric N is a hyperbolic paraboloid.

Solution of Exercise 0.1

(i) We have

$$
p(x, y)=x^{2}+2 y_{1} x+y_{1}^{2}-\left(y_{1}^{2}-y_{2}\right)=\left(x+y_{1}\right)^{2}-\Delta(y) .
$$

If $p(x, y)=0$ then the assertion of (\star) is obvious as squares are nonnegative. It follows that every solution $x \in \mathbf{R}$ of $p(x, y)=0$ is given by $x_{ \pm}=-y_{1} \pm \sqrt{\Delta(y)}$; accordingly, maximally two do exist. Obviously $x_{+}=x_{-}$if and only if $\Delta(y)=0$; hence, the final assertion is a direct consequence of (\star).
(ii) The equality $p(x, y)=0$ is equivalent with $y_{2}=-x^{2}-2 y_{1} x$, which shows that $N=\operatorname{im}(\phi)$. Furthermore, $N=\operatorname{graph}(f)$ where $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $f\left(x, y_{1}\right)=-x^{2}-2 y_{1} x$ is a C^{∞} function; therefore N is a C^{∞} submanifold of \mathbf{R}^{3} of dimension 2 on the basis of Definition 4.2.1.
(iii) The identity $D p(x, y)=(*, *, 1)$ shows that the rank of $D p(x, y)$ equals 1 everywhere; in other words, $D p(x, y)$ is surjective, for all $(x, y) \in \mathbf{R}^{3}$. Hence the second assertion is a direct consequence of the Submersion Theorem 4.5.2.
(iv) Differentiation immediately yields the following formulae:

$$
D \Phi\left(x, y_{1}\right)=\left(\begin{array}{cc}
0 & 1 \\
-2 x-2 y_{1} & -2 x
\end{array}\right) \quad \text { and } \quad \operatorname{det} D \Phi\left(x, y_{1}\right)=2\left(x+y_{1}\right) .
$$

By definition, the determinant vanishes at singular points. Hence, the identification of the set of singular points with S follows directly, whereas the equation above obviously is that of a straight line. The assertion on the rank of $D \Phi\left(x, y_{1}\right)$, for $\left(x, y_{1}\right) \in S$, follows from the fact that in this case

$$
D \Phi\left(x, y_{1}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & *
\end{array}\right) .
$$

(v) Suppose $(x, y) \in \mathbf{R}^{3}$ satisfies $\Phi\left(x, y_{1}\right)=y$. Then, in particular, we have $p(x, y)=0$ and so we obtain from $(*)$ in part (i) that $\Delta(y) \geq 0$. Hence the inclusions $\Phi(S) \subset P$ and $\Phi\left(\mathbf{R}^{2} \backslash S\right) \subset\{y \in$ $\left.\mathbf{R}^{2} \mid \Delta(y)>0\right\}$ are obvious on the basis of (\star) again. Now we prove the reverse inclusions. According to part (i) the condition $\Delta(y)=0$ on $y \in \mathbf{R}^{2}$ ensures that there is a unique solution $x \in \mathbf{R}$ for $p(x, y)=0$, i.e., $y=\Phi\left(x, y_{1}\right)$; furthermore, (\star) then implies that $\left(x, y_{1}\right) \in S$. Next, suppose $y \in \mathbf{R}^{2}$ satisfies $\Delta(y)>0$. From part (i) we then obtain the existence of two different solutions $x_{ \pm}$of the equation $p(x, y)=0$, and this gives two distinct elements $\left(x_{ \pm}, y_{1}\right) \in \mathbf{R}^{2}$ both belonging to $\Phi^{-1}(\{y\})$. Using (\star) once more, we actually get $\left(x_{ \pm}, y_{1}\right) \in \mathbf{R}^{2} \backslash S$. In geometric terms, lines in \mathbf{R}^{3} parallel to the x-axis, which means being of the form $\left\{(x, y) \in \mathbf{R}^{3} \mid x \in \mathbf{R}\right\}$, intersect the surface N once, and twice, if $\Delta(y)$ is 0 , and positive, respectively, and in no other case.
(vi) By definition $\Phi=\pi \circ \phi$; hence, we obtain $\pi^{-1} \circ \Phi=\phi$ (abusing the notation for the inverse image). Application of this identity to the set S gives the equality $\phi(S)=\pi^{-1}(P)$. Next, suppose
$\left(x, y_{1}\right) \in S$, in other words, $y_{1}=-x$. Then $\phi\left(x, y_{1}\right)=\left(x,-x, y_{2}\right) \in \phi(S)=\pi^{-1}(P)$ implies $y_{2}=x^{2}$. Accordingly

$$
\phi\left(x, y_{1}\right)=\left(x,-x, x^{2}\right)=\sigma(x), \quad \text { that is }, \quad \phi(S) \subset \Sigma .
$$

Conversely, $(x, y) \in \Sigma$ implies

$$
(x, y)=\sigma(x)=\left(x,-x, x^{2}\right)=\phi(x,-x), \quad \text { i.e., } \quad \Sigma \subset \phi(S) .
$$

Now the last assertion. $(x, y) \in \Sigma$ means that x is a solution of $p(X, y)=(X-x)^{2}=$ $X^{2}-2 x X+x^{2}=0$, and as a consequence x is a solution of $D_{1} p(X, y)=2(X-x)$ too. Accordingly, $p(x, y)=D_{1} p(x, y)=0$. Conversely, suppose $(x, y) \in \mathbf{R}^{3}$ satisfies $p(x, y)=0$ and $D_{1} p(x, y)=2\left(x+y_{1}\right)=0$; hence, in particular, $y_{1}=-x$. Hence $(x, y) \in \phi(S)=\Sigma$.
(vii) If y_{1} is fixed and $p(x, y)=0$, we get from (\star) in part (i)

$$
y_{2}=y_{1}^{2}-\Delta(y)=y_{1}^{2}-\left(x+y_{1}\right)^{2} .
$$

The right-hand side is maximal if $x+y_{1}=0$ and if this is the case it assumes the value y_{1}^{2}. Hence the vertex of the parabola has coordinates $\left(-y_{1}, y_{1}, y_{1}^{2}\right)=\sigma\left(-y_{1}\right)$ and it also opens downward.
(viii) In view of $D \sigma(x)=(1,-1,2 x)$, a parametric representation for $\Lambda(x)$ is given by $\sigma(x)+$ $\mathbf{R}(1,-1,2 x)$.
(ix) $(0,-1,2 x)$ is the orthogonal projection of $D \sigma(x)$ onto the $\left(y_{1}, y_{2}\right)$-plane along the x-axis; hence, $N(x)$ may be described as given. By definition, the lines $N(x)$ are disjoint, for distinct $x \in \mathbf{R}$. Furthermore, consider $(x, y) \in N(x)$, that is, satisfying $y_{1}=-x-\lambda$ and $y_{2}=x^{2}+2 \lambda x$, for some $\lambda \in \mathbf{R}$. Then $(x, y) \in N$ as follows from

$$
p(x, y)=x^{2}+2 y_{1} x+y_{2}=x^{2}-2(x+\lambda) x+x^{2}+2 \lambda x=0 .
$$

Accordingly, every $N(x)$ is contained in N. Conversely, suppose $x \in \mathbf{R}$ is fixed and $(x, y) \in \mathbf{R}^{3}$ belongs to N. Then there exists $\lambda \in \mathbf{R}$ such that $y_{1}=-x-\lambda$, while $p(x, y)=0$ now implies

$$
y_{2}=-x^{2}-2 y_{1} x=x^{2}+2 \lambda x ; \quad \text { i.e., } \quad(x, y) \in N(x) \text {. }
$$

The equality $N(x)=\sigma(x)+\mathbf{R}(0,-1,2 x)$ implies that $N(x)$ intersects Σ in $\sigma(x)$, and this is the only point of intersection as the elements of Σ are uniquely determined by their first component.
(x) Straightforward computation. The quadric N is a hyperbolic paraboloid since the corresponding quadratic form has two nonzero eigenvalues of opposite sign as well as a linear term.

