Exercise 0.1 (Quintic analog of Descartes' folium). Recall that $\mathbf{R}_+ = \{x \in \mathbf{R} \mid x > 0\}$ and define

$$\Phi: \mathbf{R}^2_+ \to \mathbf{R}^2_+$$
 by $\Phi(x) = \frac{1}{(x_1 x_2)^2} (x_1^5, x_2^5).$

- (i) Prove that Φ is a C^{∞} mapping and that det $D\Phi(x) = 5$, for all $x \in \mathbf{R}^2_+$.
- (ii) Verify that Φ is a C^{∞} diffeomorphism and that its inverse is given by

$$\Psi: \mathbf{R}^2_+ \to \mathbf{R}^2_+$$
 with $\Psi(y) = (y_1 y_2)^{\frac{2}{5}} (y_1^{\frac{1}{5}}, y_2^{\frac{1}{5}}).$

Compute det $D\Psi(y)$, for all $y \in \mathbf{R}^2_+$.

Let a > 0 and define

$$g: \mathbf{R}^2 \to \mathbf{R}$$
 by $g(x) = x_1^5 + x_2^5 - 5a(x_1x_2)^2$.

Now consider the bounded open sets

$$U = \{ x \in \mathbf{R}^2_+ \mid g(x) < 0 \} \quad \text{and} \quad V = \{ y \in \mathbf{R}^2_+ \mid y_1 + y_2 < 5a \}.$$

Then U has a curved boundary, while V is an isosceles rectangular triangle.

(iii) Show that $g \circ \Psi(y) = (y_1y_2)^2(y_1 + y_2 - 5a)$, for all $y \in \mathbf{R}^2_+$. Deduce that the restriction $\Psi|_V : V \to U$ is a diffeomorphism.

Background. By means of parts (ii) and (iii) one immediately computes the area of U to be $\frac{5a^2}{2}$. Denote by F the zero-set of g (see the curve in the illustration above).

- (iv) Prove that F is a C^{∞} submanifold in \mathbb{R}^2 of dimension 1 at every point of $F \setminus \{0\}$.
- (v) By means of intersection with lines through 0 obtain the following parametrization of a part of *F*:

$$\phi: \mathbf{R} \setminus \{-1\} \to \mathbf{R}^2$$
 satisfying $\phi(t) = \frac{5at^2}{1+t^5} \begin{pmatrix} 1 \\ t \end{pmatrix}.$

(vi) Compute that

$$\phi'(t) = \frac{5at}{(1+t^5)^2} \left(\begin{array}{c} 2-3t^5\\ t(3-2t^5) \end{array} \right).$$

Show that ϕ is an immersion except at 0.

(vii) Demonstrate that F is not a C^{∞} submanifold in \mathbb{R}^2 of dimension 1 at 0.

For $|x_2|$ small, x_2^5 is negligible; hence, after division by the common factor x_1^2 the equation g(x) = 0 takes the form $x_1^3 = 5ax_2^2$, which is the equation of an ordinary cusp. This suggests that F has a cusp at 0.

(viii) Prove that F actually possesses two cusps at 0. This can be done with simple calculations; if necessary, however, one may use without proof

$$\phi''(t) = \frac{10a}{(1+t^5)^3} \begin{pmatrix} 6t^{10} - 18t^5 + 1\\ t(3t^{10} - 19t^5 + 3) \end{pmatrix},$$

$$\phi'''(t) = -\frac{30a}{(1+t^5)^4} \begin{pmatrix} 5t^4(2t^{10} - 16t^5 + 7)\\ 4t^5(t^{10} - 17t^5 + 13) - 1 \end{pmatrix}.$$

Solution of Exercise 0.1

(i) Φ is a composition of C^{∞} mappings. We have

$$D\Phi(x) = \begin{pmatrix} 3\left(\frac{x_1}{x_2}\right)^2 & -2\left(\frac{x_1}{x_2}\right)^3 \\ -2\left(\frac{x_2}{x_1}\right)^3 & 3\left(\frac{x_2}{x_1}\right)^2 \end{pmatrix} \text{ and so } \det D\Phi(x) = 9 - 4 = 5.$$

(ii) Given arbitrary $y \in \mathbf{R}^2_+$, consider the equation $\Phi(x) = y$ for $x \in \mathbf{R}^2_+$; then $\frac{x_1^3}{x_2^2} = y_1$ and $\frac{x_2^3}{x_1^2} = y_2$. Multiplication and division of these equalities leads to

$$x_1x_2 = y_1y_2$$
 and $\left(\frac{x_1}{x_2}\right)^5 = \frac{y_1}{y_2}$. So $x_1x_2 = y_1y_2$ and $\frac{x_1}{x_2} = \frac{y_1^{\frac{1}{5}}}{y_2^{\frac{1}{5}}}$,

and multiplication of the equalities now gives $x_1^2 = y_1^{\frac{6}{5}} y_2^{\frac{4}{5}}$. Accordingly, $x_1 = y_1^{\frac{3}{5}} y_2^{\frac{2}{5}} = (y_1 y_2)^{\frac{2}{5}} y_1^{\frac{1}{5}}$ because x_1, y_1 and $y_2 \in \mathbf{R}_+$. Similarly, we obtain the desired formula for x_2 . It follows that Φ and Ψ are each other's inverses. On \mathbf{R}_+^2 the mapping Ψ is of class C^{∞} , which implies that Φ is a C^{∞} diffeomorphism. From part (i) and the multiplicative property of the determinant we obtain $\det D\Psi(y) = \frac{1}{5}$.

(iii) We find

$$g \circ \Psi(y) = (y_1 y_2)^2 (y_1 + y_2) - 5a(y_1 y_2)^{\frac{8}{5}} (y_1 y_2)^{\frac{2}{5}} = (y_1 y_2)^2 (y_1 + y_2 - 5a).$$

This implies $x = \Psi(y) \in U$ if and only if $g(x) = (y_1y_2)^2(y_1 + y_2 - 5a) < 0$ if and only $y_1 + y_2 - 5a < 0$ if and only if $y \in V$.

(iv) We have

$$Dg(x) = 5(x_1(x_1^3 - 2ax_2^2), x_2(x_2^3 - 2ax_1^2))$$

This matrix is of rank 1 unless (a) x = 0 or (b) $x_1^3 = 2ax_2^2$ and $x_2^3 = 2ax_1^2$. In case (b) we may assume $x \neq 0$ and we also obtain $x_1^9 = 8a^3x_2^6 = 32a^5x_1^4$, that is, $x_1^5 = (2a)^5$, which holds if and only if $x_1 = 2a$. In turn this implies $x_2 = 2a$, but $g(2a, 2a) = 64a^5 - 80a^5 = -16a^5 < 0$; in other words, $(2a, 2a) \notin F$. It follows that g is submersive at every point of $F \setminus \{0\}$. The desired conclusion follows from the Submersion Theorem 4.5.2.(ii).

(v) We eliminate x_2 from the equations g(x) = 0 and $x_2 = tx_1$, for fixed $t \in \mathbf{R}$. This leads to $(1 + t^5)x_1^5 = 5at^2x_1^4$, with solutions $x_1 = 0$ (as was to be expected) or $x_1 = \frac{5at^2}{1+t^5}$; thus the desired formula for ϕ holds.

(vi) The formula for ϕ' is a consequence of

$$\phi'(t) = \frac{5a}{(1+t^5)^2} \left(\begin{array}{c} 2t\left(1+t^5\right) - t^2 \, 5t^4 \\ 3t^2(1+t^5) - t^3 \, 5t^4 \end{array} \right) = \frac{5at}{(1+t^5)^2} \left(\begin{array}{c} 2+2t^5 - 5t^5 \\ t(3+3t^5 - 5t^5) \end{array} \right)$$

If $t \neq 0$, then the assumption $\phi'(t) = 0$ implies $2 - 3t^5 = 0$ and $3 - 2t^5 = 0$. This gives $9t^5 = 6 = 4t^5$, that is $5t^5 = 0$, and so arrived at a contradiction. Therefore $\phi'(t) \neq 0$ if $t \neq 0$; hence $\phi'(t)$ is of rank 1, which proves that ϕ is everywhere immersive except at 0.

- (vii) F has self-intersection at 0 as follows from $\lim_{t\to\pm\infty} \phi(t) = 0 = \phi(0)$. Indeed, $\tilde{\phi} : \mathbf{R} \setminus \{-1\} \to \mathbf{R}^2$ with $\tilde{\phi}(u) = \phi(\frac{1}{u})$ also defines a parametrization of F. Now $\phi(t)$ approaches 0 in a vertical direction as $t \downarrow 0$, while $\tilde{\phi}(u)$ approaches 0 in a horizontal direction as $u \downarrow 0$.
- (viii) Select $t_0 > 0$ sufficiently small, that is, suppose $2 3t_0^5 > 0$ and $3 2t_0^5 > 0$. For t running from -1 to t_0 , the sign of the first component $t(2 3t^5)$ of $\phi'(t)$ changes from negative to positive at t = 0, whereas the sign of the second component $t^2(3 2t^5)$ remains nonnegative and vanishes for t = 0 only. This behavior of ϕ' near 0 is characteristic for a vertical cusp of F at 0. Mutatis mutandis, the same argument applied to ϕ gives the existence of a second, horizontal, cusp of F at 0. Alternatively, it follows that

$$\phi''(0) = 10a \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 and $\phi'''(0) = 30a \begin{pmatrix} 0\\ 1 \end{pmatrix}$.

According to Definition 5.3.9 this implies the existence of an ordinary cusp of F at 0.