Exercise 0.1 (Quintic analog of Descartes' folium). Recall that $\mathbf{R}_{+}=\{x \in \mathbf{R} \mid x>0\}$ and define

$$
\Phi: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}^{2} \quad \text { by } \quad \Phi(x)=\frac{1}{\left(x_{1} x_{2}\right)^{2}}\left(x_{1}^{5}, x_{2}^{5}\right)
$$

(i) Prove that Φ is a C^{∞} mapping and that $\operatorname{det} D \Phi(x)=5$, for all $x \in \mathbf{R}_{+}^{2}$.
(ii) Verify that Φ is a C^{∞} diffeomorphism and that its inverse is given by

$$
\Psi: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}^{2} \quad \text { with } \quad \Psi(y)=\left(y_{1} y_{2}\right)^{\frac{2}{5}}\left(y_{1}^{\frac{1}{5}}, y_{2}^{\frac{1}{5}}\right)
$$

Compute $\operatorname{det} D \Psi(y)$, for all $y \in \mathbf{R}_{+}^{2}$.
Let $a>0$ and define

$$
g: \mathbf{R}^{2} \rightarrow \mathbf{R} \quad \text { by } \quad g(x)=x_{1}^{5}+x_{2}^{5}-5 a\left(x_{1} x_{2}\right)^{2} .
$$

Now consider the bounded open sets

$$
U=\left\{x \in \mathbf{R}_{+}^{2} \mid g(x)<0\right\} \quad \text { and } \quad V=\left\{y \in \mathbf{R}_{+}^{2} \mid y_{1}+y_{2}<5 a\right\} .
$$

Then U has a curved boundary, while V is an isosceles rectangular triangle.

(iii) Show that $g \circ \Psi(y)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right)$, for all $y \in \mathbf{R}_{+}^{2}$. Deduce that the restriction $\left.\Psi\right|_{V}: V \rightarrow U$ is a diffeomorphism.

Background. By means of parts (ii) and (iii) one immediately computes the area of U to be $\frac{5 a^{2}}{2}$. Denote by F the zero-set of g (see the curve in the illustration above).
(iv) Prove that F is a C^{∞} submanifold in \mathbf{R}^{2} of dimension 1 at every point of $F \backslash\{0\}$.
(v) By means of intersection with lines through 0 obtain the following parametrization of a part of F :

$$
\phi: \mathbf{R} \backslash\{-1\} \rightarrow \mathbf{R}^{2} \quad \text { satisfying } \quad \phi(t)=\frac{5 a t^{2}}{1+t^{5}}\binom{1}{t} .
$$

(vi) Compute that

$$
\phi^{\prime}(t)=\frac{5 a t}{\left(1+t^{5}\right)^{2}}\binom{2-3 t^{5}}{t\left(3-2 t^{5}\right)} .
$$

Show that ϕ is an immersion except at 0 .
(vii) Demonstrate that F is not a C^{∞} submanifold in \mathbf{R}^{2} of dimension 1 at 0 .

For $\left|x_{2}\right|$ small, x_{2}^{5} is negligible; hence, after division by the common factor x_{1}^{2} the equation $g(x)=0$ takes the form $x_{1}^{3}=5 a x_{2}^{2}$, which is the equation of an ordinary cusp. This suggests that F has a cusp at 0 .
(viii) Prove that F actually possesses two cusps at 0 . This can be done with simple calculations; if necessary, however, one may use without proof

$$
\begin{aligned}
\phi^{\prime \prime}(t) & =\frac{10 a}{\left(1+t^{5}\right)^{3}}\binom{6 t^{10}-18 t^{5}+1}{t\left(3 t^{10}-19 t^{5}+3\right)} \\
\phi^{\prime \prime \prime}(t) & =-\frac{30 a}{\left(1+t^{5}\right)^{4}}\binom{5 t^{4}\left(2 t^{10}-16 t^{5}+7\right)}{4 t^{5}\left(t^{10}-17 t^{5}+13\right)-1}
\end{aligned}
$$

Solution of Exercise 0.1

(i) Φ is a composition of C^{∞} mappings. We have

$$
D \Phi(x)=\left(\begin{array}{cc}
3\left(\frac{x_{1}}{x_{2}}\right)^{2} & -2\left(\frac{x_{1}}{x_{2}}\right)^{3} \\
-2\left(\frac{x_{2}}{x_{1}}\right)^{3} & 3\left(\frac{x_{2}}{x_{1}}\right)^{2}
\end{array}\right) \quad \text { and so } \quad \operatorname{det} D \Phi(x)=9-4=5
$$

(ii) Given arbitrary $y \in \mathbf{R}_{+}^{2}$, consider the equation $\Phi(x)=y$ for $x \in \mathbf{R}_{+}^{2}$; then $\frac{x_{1}^{3}}{x_{2}^{2}}=y_{1}$ and $\frac{x_{2}^{3}}{x_{1}^{2}}=y_{2}$. Multiplication and division of these equalities leads to

$$
x_{1} x_{2}=y_{1} y_{2} \quad \text { and } \quad\left(\frac{x_{1}}{x_{2}}\right)^{5}=\frac{y_{1}}{y_{2}} . \quad \text { So } \quad x_{1} x_{2}=y_{1} y_{2} \quad \text { and } \quad \frac{x_{1}}{x_{2}}=\frac{y_{1}^{\frac{1}{5}}}{y_{2}^{\frac{1}{5}}}
$$

and multiplication of the equalities now gives $x_{1}^{2}=y_{1}^{\frac{6}{5}} y_{2}^{\frac{4}{5}}$. Accordingly, $x_{1}=y_{1}^{\frac{3}{5}} y_{2}^{\frac{2}{5}}=\left(y_{1} y_{2}\right)^{\frac{2}{5}} y_{1}^{\frac{1}{5}}$ because x_{1}, y_{1} and $y_{2} \in \mathbf{R}_{+}$. Similarly, we obtain the desired formula for x_{2}. It follows that Φ and Ψ are each other's inverses. On \mathbf{R}_{+}^{2} the mapping Ψ is of class C^{∞}, which implies that Φ is a C^{∞} diffeomorphism. From part (i) and the multiplicative property of the determinant we obtain $\operatorname{det} D \Psi(y)=\frac{1}{5}$.
(iii) We find

$$
g \circ \Psi(y)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}\right)-5 a\left(y_{1} y_{2}\right)^{\frac{8}{5}}\left(y_{1} y_{2}\right)^{\frac{2}{5}}=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right) .
$$

This implies $x=\Psi(y) \in U$ if and only if $g(x)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right)<0$ if and only $y_{1}+y_{2}-5 a<0$ if and only if $y \in V$.
(iv) We have

$$
D g(x)=5\left(x_{1}\left(x_{1}^{3}-2 a x_{2}^{2}\right), x_{2}\left(x_{2}^{3}-2 a x_{1}^{2}\right)\right) .
$$

This matrix is of rank 1 unless (a) $x=0$ or (b) $x_{1}^{3}=2 a x_{2}^{2}$ and $x_{2}^{3}=2 a x_{1}^{2}$. In case (b) we may assume $x \neq 0$ and we also obtain $x_{1}^{9}=8 a^{3} x_{2}^{6}=32 a^{5} x_{1}^{4}$, that is, $x_{1}^{5}=(2 a)^{5}$, which holds if and only if $x_{1}=2 a$. In turn this implies $x_{2}=2 a$, but $g(2 a, 2 a)=64 a^{5}-80 a^{5}=-16 a^{5}<0$; in other words, $(2 a, 2 a) \notin F$. It follows that g is submersive at every point of $F \backslash\{0\}$. The desired conclusion follows from the Submersion Theorem 4.5.2.(ii).
(v) We eliminate x_{2} from the equations $g(x)=0$ and $x_{2}=t x_{1}$, for fixed $t \in \mathbf{R}$. This leads to $\left(1+t^{5}\right) x_{1}^{5}=5 a t^{2} x_{1}^{4}$, with solutions $x_{1}=0$ (as was to be expected) or $x_{1}=\frac{5 a t^{2}}{1+t^{5}}$; thus the desired formula for ϕ holds.
(vi) The formula for ϕ^{\prime} is a consequence of

$$
\phi^{\prime}(t)=\frac{5 a}{\left(1+t^{5}\right)^{2}}\binom{2 t\left(1+t^{5}\right)-t^{2} 5 t^{4}}{3 t^{2}\left(1+t^{5}\right)-t^{3} 5 t^{4}}=\frac{5 a t}{\left(1+t^{5}\right)^{2}}\binom{2+2 t^{5}-5 t^{5}}{t\left(3+3 t^{5}-5 t^{5}\right)}
$$

If $t \neq 0$, then the assumption $\phi^{\prime}(t)=0$ implies $2-3 t^{5}=0$ and $3-2 t^{5}=0$. This gives $9 t^{5}=6=4 t^{5}$, that is $5 t^{5}=0$, and so arrived at a contradiction. Therefore $\phi^{\prime}(t) \neq 0$ if $t \neq 0$; hence $\phi^{\prime}(t)$ is of rank 1 , which proves that ϕ is everywhere immersive except at 0 .
(vii) F has self-intersection at 0 as follows from $\lim _{t \rightarrow \pm \infty} \phi(t)=0=\phi(0)$. Indeed, $\widetilde{\phi}: \mathbf{R} \backslash\{-1\} \rightarrow$ \mathbf{R}^{2} with $\widetilde{\phi}(u)=\phi\left(\frac{1}{u}\right)$ also defines a parametrization of F. Now $\phi(t)$ approaches 0 in a vertical direction as $t \downarrow 0$, while $\widetilde{\phi}(u)$ approaches 0 in a horizontal direction as $u \downarrow 0$.
(viii) Select $t_{0}>0$ sufficiently small, that is, suppose $2-3 t_{0}^{5}>0$ and $3-2 t_{0}^{5}>0$. For t running from -1 to t_{0}, the sign of the first component $t\left(2-3 t^{5}\right)$ of $\phi^{\prime}(t)$ changes from negative to positive at $t=0$, whereas the sign of the second component $t^{2}\left(3-2 t^{5}\right)$ remains nonnegative and vanishes for $t=0$ only. This behavior of ϕ^{\prime} near 0 is characteristic for a vertical cusp of F at 0 . Mutatis mutandis, the same argument applied to $\widetilde{\phi}$ gives the existence of a second, horizontal, cusp of F at 0 . Alternatively, it follows that

$$
\phi^{\prime \prime}(0)=10 a\binom{1}{0} \quad \text { and } \quad \phi^{\prime \prime \prime}(0)=30 a\binom{0}{1} .
$$

According to Definition 5.3.9 this implies the existence of an ordinary cusp of F at 0 .

