Exercise 0.1 (Two-step recurrences for hyperarea and volume). Write S”~! and B" for the unit
sphere and the interior of the unit ball in R, respectively, and set

an_1 = hyperarea,, (5" 1) and vy, = vol, (B™).

Here is a table of these numbers for low values of n:

n |1 2 3 4 ) 6 7 8 9 10 11 12 13 14

, 87 5 16m3 «t 327t A 64n® A% 1287% A7

an-112 27 4w 27° — W — — —_ —  — —
3 15 3 105 12 945 60 10395 360

A7 w2 872 w3 167 wt 327t AO 647> 6 12876 7’

vy |2 ™ — =

3 2 15 6 105 24 945 120 10395 720 135135 5040

(i) In the table we see a,—1 = n vy, for 1 < n < 14. Prove this identity for all n € N, for instance,
by applying Gauss’ Divergence Theorem.

The table also suggests that the powers of 7 are given by the integral part of half the dimension and,
furthermore, that there exist two-step recurrences

2 2T
(%) Oyl = Gp—3 and Up = — Up—9.
n—2 n

In the following we will prove these identities geometrically (that is, without analyzing values of the
Gamma function), for all n € N sufficiently large. To this end, define the function s : B"~2 — R, by

s(x) = /1 — ||z||? and the mapping

x
¢:D:=B"2x]|-m7a[—R" by p(z,0) = | s(x)cosa
s(z)sina
(ii) Firstly, consider the case of n = 3. Prove that ¢ is injective and that im(¢) = S? except for a set
which is negligible for 2-dimensional integration. Note that ¢ induces the mapping

x
¥:C?:=B'x 8§t - 52 given by U(z,y) = oz, arg(y) = | s(@)n
s(z)y2
Show that 1) is a bijection between the cylinder C? and the sphere minus two points. Furthermore,
describe v in geometric terms, that is, as a projection (the inverse of 1 is known as Lambert’s
cylindrical projection of the sphere onto a tangent cylinder, see the next page for an illustration).
(iii) Next, consider the case of general n > 3. Prove Djs(x) = —%, forl1 < 57 <n-—2and

x € B"2. Furthermore, write I,, 5 for the identity matrix in Mat(n — 2, R) and also z' for the
row vector obtained from x € B"~2 by means of transposition. Show that, for all (x, a) € D,

D¢(x,a) € Lin(R" 1, R")  and  D¢(x,a) Do(x,a) € End(R" 1)

has the following matrix, respectively:

In—2 0n—2
_cosa B . I I 0
) T s(z)sina and n—2 + s(x)ng
i 0t s(x)?
SR s(z) cosa ()

s(x)



[lustration for part (ii): Lambert’s projection from sphere onto tangent cylinder

(iv) Generalize the results from part (ii). Specifically, applying results from part (iii), verify that ¢ is
a C* embedding having an open part of S”~! with negligible complement as an image.

(v) By considering the behavior of the following determinant (see part (iii)) under rotations of the
element 2 € B" 2, show

1
det (In_z + 7)2m:t> = and deduce we(z,a) =1,

s(z

where wy is the Euclidean density function associated with ¢ : D — St

s(x)?

(vi) On the basis of parts (v) and (i) prove the first equality in (x) and then deduce the second one. In
particular, prove by mathematical induction over n € N

" 22n =1 p| 27"
3] = — Vo1 = ———— and aon—1 — .
2n nl y 2n—1 (271)' 2n—1 (n — 1)'

Next, we use the formula for vy, in order to compute the volume of the standard (n + 1)-tope A™ in
R" given by

1
A"={yeR"} | Z y; <1} In fact, we claim (%) vol, (A™) = ot
1<j<n '
For proving this, introduce v CF)S o
VY1 sinag
\I/ZAnX]—ﬂ',ﬂ'[nHBQn with U(y, o) = :
\/Yn COS Qi
VYn Sin oy,



(vii) Show that ¥ is a C> diffeomorphism onto an open dense subset of B2" with Jacobi determinant
in absolute value equal to 27" and deduce (xx).

Background. The preceding results imply that B?" is diffeomorphic with the Cartesian product of
n circles with a polytope of dimension n. Analogously, B?>"*! is diffeomorphic with the Cartesian
product of n circles with the segment of the circular paraboloid of dimension n + 1 given by

{(,2) eERE xR| D yj+2° <1}

1<j<n

In v,, there occur as many factors 7 as there are independent ways to turn around in space, that is,
the number of linearly independent (two-dimensional) planes. Phrased differently, the powers of 7 are
given by the integral part of half the dimension.

(viii) According to the table above or the illustration below the sequence (an)gzo is strictly monoto-
nically increasing while ag > a7 > ag . Combine these facts with (x) to prove that (a, )5 is
strictly monotonically decreasing. Then apply part (vi) to show that lim,_, a, = 0. Deduce
that also (vy,)22 5 is strictly monotonically decreasing with lim,, o, v, = 0.

Hint: One might use the following consequence of (x):

27
—ag, n > 7 odd;
2r 27 7
Ar_1 = “ e
R P ot
§a7, n > 8 even.
Accordingly, ag = 33.073 - - - is the absolute maximum over all dimensions of the hyperareas of the
corresponding unit spheres while vs = 5.263 - - - is the absolute maximum over all dimensions of the
volumes of the corresponding unit balls.
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Mlustration: Hyperarea a,,—1 of unit sphere and volume v,, of unit ball, for 1 < n < 30

Solution of Exercise 0.1
(i) See Example 7.9.1.

(i) ¢(xz,a) = ¢(2’,a’) implies by projection onto the first coordinate that x = 2. Consideration
of the last two coordinates then leads to cosa = cosa’ and sina = sind/, thatis o = o/. It
is straightforward that im(¢) is all of S? except the half-circle { (x, —s(x),0) € S? | |z| < 1}
connecting the opposite points x4 := (£1,0,0). The half-circle is compact and of dimension 1
which implies that it is negligible for 2-dimensional integration (see page 526). We have

C?={zeR3||z|<1,25+23=1},



which shows that it is a cylinder, parallel to the xi-axis. The preceding argument implies that
v induces a bijection between C? and S? \ {x+}. Given (z,y) € C?, its image 9 (z,y) € S?
may be obtained in the following geometrical manner. Denote by £ the unique straight line in R3
containing (x, y) that is parallel to the plane { x € R3 | x1 = 0} and that intersects the x-axis.
Next define (x, ) to be the point of intersection of ¢ with S? of shortest distance to (z, ).

Ilustration: Map of the surface of the Earth based on Lambert’s cylindrical projection

(iii)) On the basis of the chain rule one sees

1 j 1
Djs(x) = m(—?xj) = —%; in other words grad s(z) = —%xt,
which leads to the matrix for D¢(x, o). Obviously Dé(x, o)t Dé(x, o) has the following matrix:
In—2 0n—2
cos sin o
I, _tosa o _sina _cosa B .
s(z) s(@) @) x s(z)sina
Op—2 —s(x)sina  s(z)cosa sina
- s(z) cos
s(z)

A-priori one knows the resulting matrix to be symmetric. Therefore, when multiplying the i-th
row in the first matrix with the j-th column in the second, one has to distinguish only three cases:
1 <i,j < n—2, which leads to the upper-left matrix belonging to Mat(n — 2, R) in the answer;
i = j = n — 1, which gives the lower-right entry as a consequence of sin® + cos?> = 1; and
t=n—1land1 < j <n — 2, which leads to sinwcosaz; — cosasinaz; = 0.

(iv) ¢ is of class C since all of its component functions are. Next im(¢) C S™~!; indeed, for
(x,a) € D,

lp(z, @)[|* = [l + s(2)(cos” o + sin’ @) = [l]|* + 1 — [l]|* = 1.
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v)

(Vi)

(vii)

Actually, im(¢) is all of S™~! except the set { (z, —s(z),0) € S*' | x € B"=2}. This
set is compact and of dimension = dim(B"~2) = n — 2; that implies that it is negligible for
(n—1)-dimensional integration (see page 526). Furthermore, ¢ is an embedding if it is immersive,
injective and has a continuous inverse upon restriction to its image. Now, suppose h € R"~!
satisfies R 5 D¢(x,a)h = 0. In view of part (iii) the upper n — 2 entries of the image vector
give hy = --- = h,_o = 0, while the two bottom entries lead to (sin? o 4 cos? a)h,_1 =
hn—1 = 0. Accordingly, D¢(zx, ) is injective, for all (x,«) € D. As in part (ii) one shows
directly that ¢ is injective on D. Finally, if ¢(x, «) = y € R", then projection of y onto its upper
n — 2 entries produces z, while o = 2 arctan (5 +?/7:171 ). This implies that the inverse mapping
¢~ : ¢(D) — D with ¢(z,a) — (z, ) is continuous.

Exactly the same arguments as in the solution to Exercise 6.23.(iii) imply

> _ 1
s@? ~ s@?

1 t
23;3;):1+

det (In_2 )

As a consequence

we(z, a) = y/det (Dp(x, )t Dp(z,a)) = s(z) = 1.

1
s(x)

im(¢) = S™! up to a negligible set according to part (iv), therefore one obtains from parts (v)
and (i)

iy
Ap—1 = / dn—1Yy = / we(y)dy = / d:r/ da = 27v,_9 = 27 4n=3
Snfl D Bn72 —r n — 2

This implies directly

1 2T ap—3 27

Un = —0Gp-1 = = —Un-2.
n nn—2 n

The formulae for v,, are a direct consequence of the identities v = 7 and v; = 2, while the
formula for as,—; follows from part (i).

It is straightforward that ¥ is a C'>° diffeomorphism onto its image. This image consists of
B?" under omission of the union of the origin and of all the sets (this union is negligible for
2n-dimensional integration)

{(.7}1,...,:Ezj_l,—Zj,O,:EQj_H,...,$2n) GBQn | 0< zj < 1} (1 <7 Sn)

Write U(y, a) = V' (y1, 01, , Yn, & ). Since the difference between W and ¥’ is a permutation
of the coordinates, one has

(;O\S/a;j —V/Yj sin
Yj 1
|det DU(y, a)| = [det DY (y1, a1, ,ym, o) =[] =_.

sin v on

15 COS O/

On the basis of the Change of Variables Theorem 6.6.1 it is obvious now that

1<j<n

n

1
T _ Vop, = / dr = / — dyda = 7" vol,, (A™).
n' Ban, A

nx] —m,mw ™ 2n



(viii) According to () we have

21
—ag, > 7 odd;
o om 7% "=
Ap_1 = “ e

T —2n—4 o
—ar, n > 8 even.
8

Now, for n > 4,
2T 2T 2 2T 2 2 2 27 2

m—2om—4 7% 9 1am—3 8  onam_2 9

which together with the preceding assertion leads to the desired strict monotonicity
A2n—1 > G2p > 02n41-

According to part (vi), for n > 4,

2™ 7t T ym\n—4
0<a2n,1:(n_1)':27r < — 3( > .

3
1<k<n 4

EnlE|

As % < 1, this implies lim,, o a2,—1 = 0, which gives lim,,_,co a, = 0 in view of the preceding
result. Applying part (i) we get the desired monotonicity for (v,)o° -; and, as a consequence,
for (v,)5 5 too because vs > vg > v7 can be gleaned from the table. Furthermore, the limit
statement for the v,, follows directly from the one for the a,,, again on the basis of part (i).



