Exercise 0.1 (Viète transformation). Suppose that $y \in \mathbf{R}^{2}$ satisfies $y_{1}^{2}-y_{2} \geq 0$ and let x_{1} and $x_{2} \in \mathbf{R}$ denote the roots of the monic quadratic polynomial $p(X, y):=X^{2}+2 y_{1} X+y_{2}$ in the variable X with coefficients $2 y_{1}$ en y_{2}.
(i) Prove the following Viète formulae: $y_{1}=-\frac{1}{2}\left(x_{1}+x_{2}\right)$ and $y_{2}=x_{1} x_{2}$.

Next consider the Viète transformation (from the plane of roots to the plane of coefficients)

$$
\Phi: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \quad \text { given by } \quad \Phi(x)=y=\left(-\frac{1}{2}\left(x_{1}+x_{2}\right), x_{1} x_{2}\right) .
$$

In the illustration below we see the image under Φ of a grid of equidistant straight lines parallel to the coordinate axes (in other words: squared paper). Apparently these lines are mapped under Φ to lines all of which are tangent to a parabola. We shall prove this remarkable result in the following.

(ii) Show that $\Phi\left(x_{1}, x_{2}\right)=\Phi\left(x_{2}, x_{1}\right)$ and deduce from this that it is sufficient to prove the result for horizontal lines only.
(iii) Consider $\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \mid x_{1} \in \mathbf{R}\right\}$, the horizontal line at the level $x_{2} \in \mathbf{R}$. Verify that the image of this line under Φ is equal to

$$
L\left(x_{2}\right)=\left\{y \in \mathbf{R}^{2} \mid p\left(x_{2}, y\right)=0\right\} .
$$

Show that $L\left(x_{2}\right)$ is a straight line in \mathbf{R}^{2} of slope $-2 x_{2}$.
(iv) Determine the set $S \subset \mathbf{R}^{2}$ of singular points of Φ (i.e., $x \in S$ if and only if det $D \Phi(x)=0$) and verify that $P=\Phi(S)$ is a parabola in \mathbf{R}^{2}.

Define $V=\left\{y \in \mathbf{R}^{2} \mid y_{1}^{2}>y_{2}\right\}$.
(v) Prove that V is the set of points in \mathbf{R}^{2} that lie below P. Show that $\Phi: \mathbf{R}^{2} \backslash S \rightarrow V$ is surjective; in particular, demonstrate that we have the C^{∞} diffeomorphism

$$
\Phi:\left\{x \in \mathbf{R}^{2} \mid x_{1}>x_{2}\right\} \rightarrow V
$$

Conclude that $y \in V$ implies $y \in L\left(x_{1}\right) \cap L\left(x_{2}\right)$ with $x_{1} \neq x_{2}$.
(vi) Let $x_{2} \in \mathbf{R}$ be a fixed but arbitrarily chosen element. Prove that $L\left(x_{2}\right) \cap P=\Phi\left(x_{2}, x_{2}\right)$, compute the geometric tangent line of P at this point, and show that this line is equal to $L\left(x_{2}\right)$.
(vii) For every $y \in L\left(x_{2}\right)$ verify that $y_{2}=y_{1}^{2}-\left(y_{1}+x_{2}\right)^{2}$; and using this identity give another proof of the statements from part (vi).
(viii) Deduce from the preceding results that passing through every point $y \in V$ there are exactly two distinct lines tangent to P and that these tangents have slopes equal to minus twice the roots of the polynomial $p(X, y)$ in X.

Solution of Exercise 0.1

(i) $x^{2}+2 y_{1} x+y_{2}=\left(x-x_{1}\right)\left(x-x_{2}\right)=x^{2}-\left(x_{1}+x_{2}\right) x+x_{1} x_{2}$ implies $y_{1}=-\frac{1}{2}\left(x_{1}+x_{2}\right)$ and $y_{2}=x_{1} x_{2}$.
(ii) The coefficients of $\Phi(x)$ are symmetric in x_{1} and x_{2}. Horizontal lines are of the form $\left\{x \in \mathbf{R}^{2} \mid\right.$ $x_{2}=$ constant $\}$.
(iii) Suppose $y=\Phi(x)$, that is, $2 y_{1}=-x_{1}-x_{2}$ and $y_{2}=x_{1} x_{2}$. Then
$2 x_{2} y_{1}=-x_{1} x_{2}-x_{2}^{2}=-y_{2}-x_{2}^{2}, \quad$ so $\quad p\left(x_{2}, y\right)=0, \quad$ that is $\quad y_{2}=-2 x_{2} y_{1}-x_{2}^{2} ;$ and this shows that y belongs to the straight line $L\left(x_{2}\right)$ in \mathbf{R}^{2} of slope $-2 x_{2}$.
(iv) We have

$$
D \Phi(x)=\left(\begin{array}{rr}
-\frac{1}{2} & -\frac{1}{2} \\
x_{2} & x_{1}
\end{array}\right), \quad \operatorname{det} D \Phi(x)=-\frac{1}{2}\left(x_{1}-x_{2}\right)=0 \quad \Longrightarrow \quad x_{1}=x_{2}
$$

Hence $S=\left\{\left(x_{2}, x_{2}\right) \in \mathbf{R}^{2} \mid x_{2} \in \mathbf{R}\right\}$, the diagonal in \mathbf{R}^{2}. Now $\left(y_{1}, y_{2}\right)=\Phi\left(x_{2}, x_{2}\right)=$ $\left(-x_{2}, x_{2}^{2}\right)$ satisfies $y_{1}^{2}=x_{2}^{2}=y_{2}$, which implies

$$
P=\Phi(S) \subset\left\{y \in \mathbf{R}^{2} \mid y_{1}^{2}-y_{2}=0\right\}=: \widetilde{P}
$$

Conversely, if $y_{1}^{2}=y_{2}$, then we have $y_{2} \geq 0$; hence there exists $x_{2} \in \mathbf{R}$ satisfying $y_{2}=x_{2}^{2}$. Then $y_{1}^{2}=x_{2}^{2}$, having a solution $y_{1}=-x_{2}$, that is, $y=\Phi\left(x_{2}, x_{2}\right)$. It follows that $\widetilde{P} \subset P$ and therefore $P=\widetilde{P}$.
(v) Indeed, given $y \in V$, the system of equations $x_{1}+x_{2}=-2 y_{1}$ and $x_{1} x_{2}=y_{2}$ for $x \in \mathbf{R}^{2}$ is equivalent to the system $x_{1}^{2}+2 y_{1} x_{1}+y_{2}=0$ and $x_{2}=-x_{1}-2 y_{1}$. The latter system has a solution $x \in \mathbf{R}^{2} \backslash S$, because $y \in V$ represents the well-known discriminant criterion for $p(X, y)$ having two distinct real roots. Hence $y=\Phi(x)$, and therefore $y \in L\left(x_{1}\right) \cap L\left(x_{2}\right)$ with $x_{1} \neq x_{2}$.
(vi) Consider $y \in L\left(x_{2}\right) \cap P$. According to part (iv) the condition $y \in P$ implies the existence of $\tilde{x}_{2} \in \mathbf{R}$ such that $y=\Phi\left(\tilde{x}_{2}, \tilde{x}_{2}\right)$. Furthermore, the condition $y \in L\left(x_{2}\right)$ now gives

$$
0=x_{2}^{2}-2 x_{2} \tilde{x}_{2}+\tilde{x}_{2}^{2}=\left(x_{2}-\tilde{x}_{2}\right)^{2}, \quad \text { so } \quad x_{2}=\tilde{x}_{2}, \quad \text { hence } \quad y=\Phi\left(x_{2}, x_{2}\right)
$$

The tangent line of P at $\Phi\left(x_{2}, x_{2}\right)$ is the set of $y \in \mathbf{R}^{2}$ satisfying

$$
\left.\left(2 y_{1},-1\right)\right|_{y=\left(-x_{2}, x_{2}^{2}\right)}\binom{y_{1}}{y_{2}}=-\left(2 x_{2} y_{1}+y_{2}\right)=0
$$

As a consequence, the geometric tangent line of P at $\Phi\left(x_{2}, x_{2}\right)$ equals $\left\{y \in \mathbf{R}^{2} \mid 2 x_{2} y_{1}+y_{2}=c\right\}$ where $c \in \mathbf{R}$ is determined by $c=-2 x_{2}^{2}+x_{2}^{2}=-x_{2}^{2}$; in other words, the geometric tangent line equals $L\left(x_{2}\right)$.
(vii) A point $y \in L\left(x_{2}\right)$ satisfies

$$
y_{2}=-2 x_{2} y_{1}-x_{2}^{2}, \quad \text { so } \quad y_{2}-y_{1}^{2}=-\left(y_{1}^{2}+2 y_{1} x_{2}+x_{2}^{2}\right)=-\left(y_{1}+x_{2}\right)^{2} \leq 0 .
$$

This yields that $L\left(x_{2}\right) \subset V \cup P$. Furthermore, $y \in P$ if and only if $y_{1}=-x_{2}$; but then $y_{2}=x_{2}^{2}$, that is, $y=\Phi\left(x_{2}, x_{2}\right)$. We have proved that the line $L\left(x_{2}\right)$ lies at one side of the parabola P and intersects P in the point $\Phi\left(x_{2}, x_{2}\right)$, and this proves the claim.
(viii) Obvious.

