
Exercise 0.1 (Computation of ζ(2) by successive integration). Define the open set J =
]

0,
√

2
[

⊂
R and the function m : J → R by m(y1) = min(y1,

√
2 − y1).

(i) Sketch the graph of m. Verify that the open subset ♦ of R
2 is a square of area 1 if we set

♦ = { y ∈ R
2 | y1 ∈ J, −m(y1) < y2 < m(y1) }.

(ii) Define

f : ♦ → R by f(y) =
1

2 − y2
1

+ y2
2

.

Compute by successive integration
∫

♦

f(y) dy =
π2

12
.

At (
√

2, 0), which belongs to the closure in R
2 of ♦, the integrand f is unbounded. Yet, without

proof one may take the convergence of the integral for granted.

Hint: Write the integral the sum of two integrals, one involving
]

0, 1

2

√
2
[

and one
]

1

2

√
2,
√

2
[

,

which can be computed to be π2

36
and π2

18
, respectively. In doing so, use that f(y) = f(y1,−y2).

Furthermore, without proof one may use the following identities, which easily can be verified by

differentiation:
∫

f(y1, y2) dy2 = : g(y1, y2) :=
1

√

2− y2
1

arctan
( y2
√

2− y2
1

)

,

∫

g(y1, y1) dy1 =
1

2
arctan2

( y1
√

2 − y2
1

)

,

∫

g(y1,
√

2 − y1) dy1 = − arctan2

(

√√
2 − y1√
2 + y1

)

.

Introduce the open set I = ] 0, 1 [ ⊂ R, and furthermore the counterclockwise rotation of R
2 about the

origin by the angle π
4

by

Ψ ∈ End(R2) with Ψ =
1√
2

( 1 −1

1 1

)

, set � = I2 ⊂ R
2.

(iii) Show that Ψ : ♦ → � is a C∞ diffeomorphism and using this fact deduce from part (ii)

∫

�

1

1 − x1x2

dx =
π2

6
.

(iv) Conclude from part (iii)
∫

I

log(1 − x)

x
dx = −π2

6
.

Give arguments that the integrand is a bounded continuous function on I near 0.

(v) Compute
∫

�
(x1x2)

k−1 dx, for k ∈ N. Assuming without proof that in this particular case

summation of an infinite series and integration may be interchanged, use part (iii) (or part (iv)) to

show Euler’s celebrated identity

ζ(2) :=
∑

k∈N

1

k2
=

π2

6
.
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Solution of Exercise 0.1

(i) graph(m) is given by

1
����������!!!!
2

�!!!!
2

1
����������!!!!
2

This is an isosceles rectangular triangle of hypothenuse
√

2, hence its area equals 1

2
.

(ii) Note J = 1

2
J ∪ ( 1

2

√
2 + 1

2
J) while the two subintervals have only one point in common. On

1

2
J and 1

2

√
2 + 1

2
J one has m(y1) = y1 and m(y1) =

√
2 − y1, respectively. Furthermore

f(y) = f(y1,−y2). Therefore, using a generalization of Corollary 6.4.3 on interchanging the

order of integration and the antiderivatives as given in the hint, one obtains

∫

♦

f(y) dy = 2

∫ 1

2

√
2

0

∫ y1

0

f(y) dy2 dy1 + 2

∫

√
2

1

2

√
2

∫

√
2−y1

0

f(y) dy2 dy1

= 2

∫ 1

2

√
2

0

g(y1, y1) dy1 + 2

∫

√
2

1

2

√
2

g(y1,
√

2 − y1) dy1

= arctan2

(

√

1

2
√

3

2

)

+ 2 arctan2
( 1√

3

)

=
π2

36
+

π2

18
=

π2

12
,

because tan(π
6
) = 1√

3
.

(iii) The rotations Ψ and Ψ−1 are bijective and C∞; hence, Ψ is a C∞ diffeomorphism. From the

description of Ψ as a specific rotation one gets Ψ(♦) = �. Thus, Ψ : ♦ → � is a C∞

diffeomorphism. Observe that, for y ∈ ♦ and x = Ψ(y) ∈ �,

1

1 − x1x2

=
1

1 − 1

2
(y1 − y2)(y1 + y2)

= 2f(y) and | detDΨ(y)| = 1.

Application of the Change of Variables Theorem 6.6.1 now leads to the desired equality.

(iv) Note that
∫

I

1

1− x1x2

dx2 =
[

− log(1 − x1x2)

x1

]1

0
= − log(1 − x1)

x1

.

Since � = I × I , one obtains the desired formula by means of Corollary 6.4.3 once more. Taylor

series expansion of the integrand about 0 shows that it equals −1 + O(x), for x ↓ 0.

(v) Obviously
∫

�

xk−1
1

xk−1
2

dx =
(

∫

I

xk−1 dx
)2

=
1

k2
.

Summation of the geometric series leads to

∑

k∈N

(x1x2)
k−1 =

1

1 − x1x2

.
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Integrating the equality over � and interchanging summation of an infinite series and integration

one finds, on the basis of part (iii)

∑

k∈N

1

k2
=
∑

k∈N

∫

�

(x1x2)
k−1 dx =

∫

�

1

1 − x1x2

dx =
π2

6
.

Background. Compare this exercise with Exercise 6.39. Note that the definition of the integral in part

(ii) needs some care, as the integrand f becomes infinite at the corner (
√

2, 0) of the closure of ♦. Since

f is continuous and positive on the open set ♦, in order to prove convergence of the integral it suffices

to show the existence of an increasing sequence of compact Jordan measurable sets Kk ⊂ ♦ such that

∪k∈NKk = ♦ and that the
∫

Kk

f(y) dy exist and converge as k → ∞, see Theorem 6.10.6. One may

do this, by choosing the subsets Kk to be the closures of the contracted squares k−1

k
♦.

Next, the antiderivatives in part (ii) may be computed as follows. For the first one, write

f(y) =
1

√

2 − y2
1

1

1 +
(

y2√
2−y2

1

)2

d

dy2

y2
√

2 − y2
1

and set u = u(y2) =
y2

√

2 − y2
1

;

further, use
∫

1

1+u2 du = arctanu. For the second antiderivative, apply the change of variables

v = v(y1) =
y1

√

2 − y2
1

, so y1 =
√

2
v√

1 + v2
,

√

2 − y2
1

=

√
2

(1 + v2)
1

2

,
dy1

dv
=

√
2

(1 + v2)
3

2

.

Thus,
∫

g(y1, y1) dy1 =

∫

arctan v

1 + v2
dv =

1

2
arctan2 v.

For the third antiderivative, apply the change of variables

w = w(y1) =

√
2 − y1

√

2 − y2
1

, so y1 =
√

2
1 − w2

1 + w2
,

√

2 − y2
1

=
2
√

2w

1 + w2
,

dy1

dv
= − 4

√
2w

(1 + w2)2
.

Thus,
∫

g(y1, y1) dy1 = −2

∫

arctanw

1 + w2
dv = − arctan2 w.

3


