Exercise 0.1 (Computation of ((2) by successive integration). Define the open set J = ]0,v2[ C
R and the functionm : J — R by m(y1) = min(y1, v2 — y1).

(i) Sketch the graph of m. Verify that the open subset ¢ of R? is a square of area 1 if we set
O={yeR’|yi€J, —my) <y2 <mly) }.

(i1) Define
f:0=R by  f(y)

Compute by successive integration

7T2
[ sway=T;.

At (\/5 ,0), which belongs to the closure in R? of §, the integrand f is unbounded. Yet, without
proof one may take the convergence of the integral for granted.

Hint: Write the integral the sum of two integrals, one involving] 0, % 2 [ and one ] %\/5, V2 [,
which can be computed to be % and 7{—;, respectively. In doing so, use that f(y) = f(y1, —y2)-
Furthermore, without proof one may use the following identities, which easily can be verified by

differentiation:

[ st artan (2,

1
19y, ) = ——
1, Y2 =g 2o

1 2 Y1
gy, y1)dyr = 7 arctan (7)
/ 2 1/2—y%

2—1
VB —y)dy = —arct 2( L)
/g(yl yl) Y1 arctan \/§+y1

Introduce the open set I = ]0,1[ C R, and furthermore the counterclockwise rotation of R? about the
origin by the angle 7 by

1 _
U e End(R?)  with \1/:—(1 1), st O=1I>C R
Vvoul 1

(iii) Show that ¥ :  — [ is a C*° diffeomorphism and using this fact deduce from part (ii)
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Give arguments that the integrand is a bounded continuous function on I near 0.

(iv) Conclude from part (iii)

(v) Compute | O (x129)* 1 dx, for k € N. Assuming without proof that in this particular case
summation of an infinite series and integration may be interchanged, use part (iii) (or part (iv)) to
show Euler’s celebrated identity
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Solution of Exercise 0.1

®

(i)

(iii)

(iv)

)

graph(m) is given by

5

S vz
N2

This is an isosceles rectangular triangle of hypothenuse v/2, hence its area equals %

Note J = %J U (%\/5 + %J ) while the two subintervals have only one point in common. On
$J and 3v/2 + 17 one has m(y1) = yi and m(y1) = V2 — y1, respectively. Furthermore
fly) = f(y1, —y2). Therefore, using a generalization of Corollary 6.4.3 on interchanging the
order of integration and the antiderivatives as given in the hint, one obtains
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because tan(%) = —=.

e
The rotations ¥ and W~ are bijective and C*°; hence, ¥ is a C* diffeomorphism. From the
description of ¥ as a specific rotation one gets ¥(¢) = 0. Thus, ¥ : ¢ — O is a C*
diffeomorphism. Observe that, for y € ¢ and z = ¥(y) € O,

1 1
= =2f(y and det DU (y)| = 1.
L—mze  1—3(y1 —y2)(v1 + 42) ) | W)l

Application of the Change of Variables Theorem 6.6.1 now leads to the desired equality.

Note that

/I 1 dy — [_ log(1 — :1:1:132)} 1 log(l— )

1— T1x2 al 0 I

Since [J = I x I, one obtains the desired formula by means of Corollary 6.4.3 once more. Taylor
series expansion of the integrand about 0 shows that it equals —1 + O(x), for z | 0.
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Summation of the geometric series leads to
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Obviously



Integrating the equality over [J and interchanging summation of an infinite series and integration
one finds, on the basis of part (iii)

I k=1 5. 1 T
Zkz—Z/D(xlxg) dm—/Dil_wlwzdm—fs.
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Background. Compare this exercise with Exercise 6.39. Note that the definition of the integral in part
(ii) needs some care, as the integrand f becomes infinite at the corner (\/5 , 0) of the closure of ¢. Since
f 1is continuous and positive on the open set ¢, in order to prove convergence of the integral it suffices
to show the existence of an increasing sequence of compact Jordan measurable sets K C ¢ such that
UrenKjg = ¢ and that the ka f(y) dy exist and converge as k — oo, see Theorem 6.10.6. One may

do this, by choosing the subsets K}, to be the closures of the contracted squares k%l 0.
Next, the antiderivatives in part (ii) may be computed as follows. For the first one, write

1 d Y2
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further, use [ ﬁ du = arctan u. For the second antiderivative, apply the change of variables

V2 dy V2
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andset  u=u(y2) =

f(y)

v=o(p) = —2—, S0y =V2

Thus,

arctanv 1
/g(ylayl) dyl = / W dv = 5 arctanzv.

For the third antiderivative, apply the change of variables

2 — 1 —w? 2v/2 44/2
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w =w = s SO = Pa—— Pa——— D EEE————
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Thus,
arctanw
/g(yla yl) dyl = -2 / W dv = — arctanzw.



