NBA Lecture 5

Numerical continuation of connecting orbits in ODEs

Yu.A. Kuznetsov (Utrecht University, NL)

March 18, 2011

Contents

1. Point-to-point connections.
2. Continuation of homoclinic orbits of ODEs.
3. Continuation of invariant subspaces.
4. Detection of higher-order singularities.
5. Cycle-to-cycle connections in 3D ODEs.

1. Point-to-point connections

- Consider a family of ODEs

$$
\dot{x}=f(x, \alpha), \quad x \in \mathbb{R}^{n}, \alpha \in \mathbb{R}
$$

having equilibria x^{-}and $x^{+}, f\left(x^{ \pm}, \alpha\right)=0$.

Def. 1 An orbit $\Gamma=\{x=x(t): t \in \mathbb{R}\}$, where $x(t)$ is a solution to the ODE system at some α, is called heteroclinic between x^{-}and x^{+}if

$$
\lim _{t \rightarrow \pm \infty} x(t)=x^{ \pm}
$$

If $x^{ \pm}=x^{0}$, it is called homoclinic to x^{0}.

- Introduce unstable and stable invariant sets

$$
\begin{aligned}
W^{u}\left(x^{-}\right) & =\left\{x(0) \in \mathbb{R}^{n}: \lim _{t \rightarrow-\infty} x(t)=x^{-}\right\}, \\
W^{s}\left(x^{+}\right) & =\left\{x(0) \in \mathbb{R}^{n}: \lim _{t \rightarrow+\infty} x(t)=x^{+}\right\} .
\end{aligned}
$$

- Then $\Gamma \subset W^{u}\left(x^{-}\right) \cap W^{s}\left(x^{+}\right)$.
- The intersection of $W^{u}\left(x^{0}\right)$ and $W^{s}\left(x^{0}\right)$ cannot be transversal along a homoclinic orbit Γ, since $\dot{x}(t) \in T_{x(t)} W^{u}\left(x^{0}\right) \cap T_{x(t)} W^{s}\left(x^{0}\right)$.

- Homoclinic orbts exist in generic ODE families only at isolated parameter values.

Def. 2 A homoclinic orbit Γ is called regular if

- $f_{x}\left(x^{0}\right)$ has no eigenvalues with $\Re(\lambda)=0$;
- $\operatorname{dim}\left(T_{x(t)} W^{u}\left(x^{0}\right) \cap T_{x(t)} W^{s}\left(x^{0}\right)\right)=1$;
- The intersection of the traces of $W^{u}\left(x^{0}\right)$ and $W^{s}\left(x^{0}\right)$ along Γ is transversal in the (x, α)-space.

2. Continuation of homoclinic orbits of ODEs

- Homoclinic problem

$$
\left\{\begin{aligned}
f\left(x^{0}, \alpha\right) & =0 \\
\dot{x}(t)-f(x(t), \alpha) & =0 \\
\lim _{t \rightarrow \pm \infty} x(t)-x^{0} & =0, t \in \mathbb{R} \\
\int_{-\infty}^{\infty}\langle\dot{y}(t), x(t)-y(t)\rangle d t & =0
\end{aligned}\right.
$$

where y is a reference homoclinic solution.

- Truncate with the projection boundary conditions:

$$
\left\{\begin{aligned}
f\left(x^{0}, \alpha\right) & =0, \\
\dot{x}(t)-f(x(t), \alpha) & =0, t \in[-T, T] \\
L_{s}^{\top}\left(x^{0}, \alpha\right)\left(x(-T)-x^{0}\right) & =0 \\
L_{u}^{\top}\left(x^{0}, \alpha\right)\left(x(+T)-x^{0}\right) & =0 \\
\int_{-T}^{T}\langle\dot{y}(t), x(t)-y(t)\rangle d t & =0
\end{aligned}\right.
$$

where the columns of L_{s} and L_{u} span the orthogonal complements to $T^{u}=T_{x^{0}} W^{u}\left(x^{0}\right)$ and $T^{s}=T_{x^{0}} W^{s}\left(x^{0}\right)$, resp.

- Assume the eigenvalues of $A=f_{x}\left(x^{0}, \alpha\right)$ are arranged as follows:

$$
\Re\left(\mu_{n_{s}}\right) \leq \cdots \leq \Re\left(\mu_{1}\right)<0<\Re\left(\lambda_{1}\right) \leq \cdots \leq \Re\left(\lambda_{n_{u}}\right)
$$

If $V^{*}=\left\{v_{1}^{*}, \ldots, v_{n_{s}}^{*}\right\}$ and $W^{*}=\left\{w_{1}^{*}, \ldots, w_{n_{u}}^{*}\right\}$ span the stable and unstable eigenspaces of A^{\top}, then $L_{s}=\left[V^{*}\right]$ and $L_{u}=\left[W^{*}\right]$.

- Let (μ, λ) satisfy $\Re\left(\mu_{1}\right)<\mu<0<\lambda<\Re\left(\lambda_{1}\right)$ and

$$
\omega=\min (|\mu|, \lambda) .
$$

Th. 1 (Beyn) There is a locally unique solution to the truncated problem for a regular homoclinic orbit with the $(x(\cdot), \alpha)$-error that is $O\left(e^{-2 \omega T}\right)$.

Remarks:

1. If W^{u} is one-dimensional, one can use the explicit boundary conditions

$$
\begin{aligned}
x(-T)-\left(x^{0}+\varepsilon w_{1}\right) & =0 \\
\left\langle w_{1}^{*}, x(T)-x^{0}\right\rangle & =0
\end{aligned}
$$

where $A w_{1}=\lambda_{1} w_{1}$ and $A^{\top} w_{1}^{*}=\lambda_{1} w_{1}^{*}$, without the integral phase condition.
2. Implemented in MATCONT with possibilities to start
(i) from a large period cycle;
(ii) by homotopy.
(iii) from codim 2 BT-bifurcations of equilibria.

3. Continuation of invariant subspaces

Th. 2 (Smooth Schur Block Factorization) Any paramter-dependent matrix $A(s) \in \mathbb{R}^{n \times n}$ with nontrivial stable and unstable eigenspaces can be written as

$$
A(s)=Q(s)\left[\begin{array}{cl}
R_{11}(s) & R_{12}(s) \\
0 & R_{22}(s)
\end{array}\right] Q^{\top}(s),
$$

where $Q(s)=\left[\begin{array}{ll}Q_{1}(s) & \left.Q_{2}(s)\right] \text { such that }\end{array}\right.$

- $Q(s)$ is orthogonal, i.e. $Q^{\top}(s) Q(s)=I_{n}$;
- the eigenvalues of $R_{11}(s) \in \mathbb{R}^{m \times m}$ are the unstable eigenvalues of $A(s)$, while the eigenvalues of $R_{22}(s) \in \mathbb{R}^{(n-m) \times(n-m)}$ are the remaning $(n-m)$ eigenvalues of $A(s)$;
- the columns of $Q_{1}(s) \in \mathbb{R}^{n \times m}$ span the eigenspace $\mathcal{E}(s)$ of $A(s)$ corresponding to its m unstable eigenvalues;
- the columns of $Q_{2}(s) \in \mathbb{R}^{n \times(n-m)}$ span the orthogonal complement $\mathcal{E}^{\perp}(s)$.
- $Q_{i}(s)$ and $R_{i j}(s)$ have the same smoothness as $A(s)$.

Then holds the invariant subspace relation:

$$
Q_{2}^{\top}(s) A(s) Q_{1}(s)=0 .
$$

CIS-algorithm [Dieci \& Friedman]

- Define

$$
\left[\begin{array}{ll}
T_{11}(s) & T_{12}(s) \\
T_{21}(s) & T_{22}(s)
\end{array}\right]=Q^{\top}(0) A(s) Q(0)
$$

for small $|s|$, where $T_{11}(s) \in \mathbb{R}^{m \times m}$.

- Compute $Y \in \mathbb{R}^{(n-m) \times m}$ satisfying the Riccati matrix equation

$$
Y T_{11}(s)-T_{22}(s) Y+Y T_{12}(s) Y=T_{21}(s)
$$

- Then $Q(s)=Q(0) U(s)$ where

$$
U(s)=\left[U_{1}(s) \quad U_{2}(s)\right]
$$

with

$$
\begin{aligned}
& U_{1}(s)=\binom{I_{m}}{Y}\left(I_{n-m}+Y^{\top} Y\right)^{-\frac{1}{2}}, \\
& U_{2}(s)=\binom{-Y^{\top}}{I_{n-m}}\left(I_{n-m}+Y Y^{\top}\right)^{-\frac{1}{2}},
\end{aligned}
$$

so that columns of $Q_{1}(s)=Q(0) U_{1}(s)$ and $Q_{2}(s)=Q(0) U_{2}(s)$ form orthogonal bases in $\mathcal{E}(s)$ and $\mathcal{E}^{\perp}(s)$.

- In MATCONT, two Riccati equations are included in the defining BVCP to compute $L_{s}=\left[V^{*}\right]$ and $L_{u}=\left[W^{*}\right]$.

4. Detection of higher-order homoclinic singularities

- fold or Hopf bifurcations of x^{0};
- special eigenvalue configurations (e.g. $\sigma=\Re\left(\mu_{1}\right)+\Re\left(\lambda_{1}\right)=0$ or $\mu_{1}-\mu_{2}=0$);
- change of global topology of W^{s} and W^{n} (orbit and inclination flips);
- higher nontransversality.

5. Cycle-to-cycle connections in 3D ODEs

$$
\dot{x}=f(x, \alpha), \quad x \in \mathbb{R}^{n}, \alpha \in \mathbb{R}^{p}
$$

- Let O^{-}be a limit cycle with only one (trivial) multiplier satisfying $|\mu|=1$ and having $\operatorname{dim} W_{-}^{u}=m_{u}^{-}$.
- Let O^{+}be a limit cycle with only one (trivial) multiplier satisfying $|\mu|=1$ and having $\operatorname{dim} W_{+}^{s}=m_{s}^{+}$.
- Let $x^{ \pm}(t)$ be periodic solutions (with minimal periods $T^{ \pm}$) corresponding to $O^{ \pm}$and $M^{ \pm}$the corresponding monodromy matrices, i.e. $M\left(T^{ \pm}\right)$where

$$
\dot{M}=f_{x}\left(x^{ \pm}(t), \alpha\right) M, \quad M(0)=I_{n}
$$

Isolated families of connecting orbits

- Beyn's equality: $p=n-m_{s}^{+}-m_{u}^{-}+2$.
- Heteroclinic cycle-to-cycle connections in \mathbb{R}^{3}

heteroclinic orbit
- Homoclinic cycle-to-cycle connections in \mathbb{R}^{3}

- homoclinic orbit to a hyperbolic cycle \Rightarrow infinite number of cycles (Poincaré homoclinic structure).

Truncated BVCP

- The connecting solution $u(t)$ is truncated to an interval $\left[\tau_{-}, \tau_{+}\right]$.
- The points $u\left(\tau_{+}\right)$and $u\left(\tau_{-}\right)$are required to belong to the linear subspaces that are tangent to the stable and unstable invariant manifolds of O^{+}and O^{-}, respectively:

$$
\left\{\begin{aligned}
L_{+}^{\top}\left(u\left(\tau_{+}\right)-x^{+}(0)\right) & =0 \\
L_{-}^{\top}\left(u\left(\tau_{-}\right)-x^{-}(0)\right) & =0
\end{aligned}\right.
$$

- Generically, the truncated BVP composed of the ODE, the above projection BC's, and a phase condition on u, has a unique solution family ($\hat{u}, \hat{\alpha}$), provided that the ODE has a connecting solution family satisfying the pahase condition and Beyn's equality.

Th. 3 (Pampel-Dieci-Rebaza) If u is a generic connecting solution to the ODE at parameter value α, then the following estimate holds:

$$
\left\|\left(\left.u\right|_{\left[\tau_{-}, \tau_{+}\right]}, \alpha\right)-(\widehat{u}, \widehat{\alpha})\right\| \leq C \mathrm{e}^{-2 \min \left(\mu_{-}\left|\tau_{-}\right|, \mu_{+}\left|\tau_{+}\right|\right)}
$$

where

- $\|\cdot\|$ is an appropriate norm in the space $C^{1}\left(\left[\tau_{-}, \tau_{+}\right], \mathbb{R}^{n}\right) \times \mathbb{R}^{p}$,
- $\left.u\right|_{\left[\tau_{-}, \tau_{+}\right]}$is the restriction of u to the truncation interval,
- $\mu_{ \pm}$are determined by the eigenvalues of the monodromy matrices $M^{ \pm}$.

Adjoint variational eqiation: $\dot{w}=-f_{x}^{\top}\left(x^{ \pm}(t), \alpha\right) w, \quad w \in \mathbb{R}^{n}$.

Let $N(t)$ be the solution to

$$
\dot{N}=-f_{x}^{\top}\left(x^{ \pm}(t), \alpha\right) N, \quad N(0)=I_{n}
$$

Then $N\left(T^{ \pm}\right)=\left[M^{-1}\left(T^{ \pm}\right)\right]^{\top}$.

The defining BVCP in 3D: Geometry

Cycle-related equations:

- Periodic solutions:

$$
\left\{\begin{aligned}
\dot{x}^{ \pm}-f\left(x^{ \pm}, \alpha\right) & =0 \\
x^{ \pm}(0)-x^{ \pm}\left(T^{ \pm}\right) & =0
\end{aligned}\right.
$$

- Adjoint eigenfunctions: $\mu^{+}=\frac{1}{\mu_{u}^{+}}, \mu^{-}=\frac{1}{\mu_{s}^{-}}$.

$$
\left\{\begin{array}{r}
\dot{w}^{ \pm}+f_{u}^{\top}\left(x^{ \pm}, \alpha\right) w^{ \pm}=0 \\
w^{ \pm}\left(T^{ \pm}\right)-\mu^{ \pm} w^{ \pm}(0)=0 \\
\left\langle w^{ \pm}(0), w^{ \pm}(0)\right\rangle-1=0
\end{array}\right.
$$

or equivalently

$$
\left\{\begin{aligned}
\dot{w}^{ \pm}+f_{u}^{\top}\left(x^{ \pm}, \alpha\right) w^{ \pm}+\lambda^{ \pm} w^{ \pm} & =0 \\
w^{ \pm}\left(T^{ \pm}\right)-s^{ \pm} w^{ \pm}(0) & =0 \\
\left\langle w^{ \pm}(0), w^{ \pm}(0)\right\rangle-1 & =0
\end{aligned}\right.
$$

where $\lambda^{ \pm}=\ln \left|\mu^{ \pm}\right|, s^{ \pm}=\operatorname{sign}\left(\mu^{ \pm}\right)$.

- Projection $\mathrm{BC}:\left\langle w^{ \pm}(0), u\left(\tau_{ \pm}\right)-x^{ \pm}(0)\right\rangle=0$.

Connection-related equations:

- The equation for the connection:

$$
\dot{u}-f(u, \alpha)=0
$$

- We need the base points $x^{ \pm}(0)$ to move freely and independently upon each other along the corresponding cycles $O^{ \pm}$.
- We require the end-point of the connection to belong to a plane orthogonal to the vector $f\left(x^{+}(0), \alpha\right)$, and the starting point of the connection to belong to a plane orthogonal to the vector $f\left(x^{-}(0), \alpha\right)$:

$$
\left\langle f\left(x^{ \pm}(0), \alpha\right), u\left(\tau_{ \pm}\right)-x^{ \pm}(0)\right\rangle=0
$$

The defining BVCP in 3D

$$
\left\{\begin{aligned}
\dot{x}^{ \pm}-T^{ \pm} f\left(x^{ \pm}, \alpha\right) & =0 \\
x^{ \pm}(0)-x^{ \pm}(1) & =0 \\
\dot{w}^{ \pm}+T^{ \pm} f_{u}^{\top}\left(x^{ \pm}, \alpha\right) w^{ \pm}+\lambda^{ \pm} w^{ \pm} & =0 \\
w^{ \pm}(1)-s^{ \pm} w^{ \pm}(0) & =0 \\
\left\langle w^{ \pm}(0), w^{ \pm}(0)\right\rangle-1 & =0 \\
\dot{u}-T f(u, \alpha) & =0 \\
\left\langle f\left(x^{+}(0), \alpha\right), u(1)-x^{+}(0)\right\rangle & =0 \\
\left\langle f\left(x^{-}(0), \alpha\right), u(0)-x^{-}(0)\right\rangle & =0 \\
\left\langle w^{+}(0), u(1)-x^{+}(0)\right\rangle & =0 \\
\left\langle w^{-}(0), u(0)-x^{-}(0)\right\rangle & =0 \\
\left\|u(0)-x^{-}(0)\right\|^{2}-\varepsilon^{2} & =0
\end{aligned}\right.
$$

There is an efficient homotopy method to find a starting solution.

