NBA Lecture 5

Numerical continuation of connecting orbits in ODEs

Yu.A. Kuznetsov (Utrecht University, NL)

March 18, 2011

Contents

- 1. Point-to-point connections.
- 2. Continuation of homoclinic orbits of ODEs.
- 3. Continuation of invariant subspaces.
- 4. Detection of higher-order singularities.
- 5. Cycle-to-cycle connections in 3D ODEs.

1. Point-to-point connections

• Consider a family of ODEs

 $\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \alpha \in \mathbb{R},$

having equilibria x^- and x^+ , $f(x^{\pm}, \alpha) = 0$.

Def. 1 An orbit $\Gamma = \{x = x(t) : t \in \mathbb{R}\}$, where x(t) is a solution to the ODE system at some α , is called **heteroclinic** between x^- and x^+ if

$$\lim_{t \to \pm \infty} x(t) = x^{\pm}.$$

If $x^{\pm} = x^0$, it is called **homoclinic** to x^0 .

• Introduce unstable and stable invariant sets

$$W^{u}(x^{-}) = \{x(0) \in \mathbb{R}^{n} : \lim_{t \to -\infty} x(t) = x^{-}\},\$$
$$W^{s}(x^{+}) = \{x(0) \in \mathbb{R}^{n} : \lim_{t \to +\infty} x(t) = x^{+}\}.$$

• Then $\Gamma \subset W^u(x^-) \cap W^s(x^+)$.

• The intersection of $W^u(x^0)$ and $W^s(x^0)$ cannot be transversal along a homoclinic orbit Γ , since $\dot{x}(t) \in T_{x(t)}W^u(x^0) \cap T_{x(t)}W^s(x^0)$.

• Homoclinic orbts exist in generic ODE families only at isolated parameter values.

Def. 2 A homoclinic orbit Γ is called regular if

- $f_x(x^0)$ has no eigenvalues with $\Re(\lambda) = 0$;
- dim $(T_{x(t)}W^u(x^0) \cap T_{x(t)}W^s(x^0)) = 1;$
- The intersection of the **traces** of $W^u(x^0)$ and $W^s(x^0)$ along Γ is transversal in the (x, α) -space.

- 2. Continuation of homoclinic orbits of ODEs
 - Homoclinic problem

$$\begin{cases} f(x^0,\alpha) = 0, \\ \dot{x}(t) - f(x(t),\alpha) = 0, \\ \lim_{t \to \pm \infty} x(t) - x^0 = 0, \ t \in \mathbb{R}, \\ \int_{-\infty}^{\infty} \langle \dot{y}(t), x(t) - y(t) \rangle dt = 0, \end{cases}$$

where y is a reference homoclinic solution.

• Truncate with the projection boundary conditions:

$$\begin{cases} f(x^{0}, \alpha) = 0, \\ \dot{x}(t) - f(x(t), \alpha) = 0, t \in [-T, T] \\ L_{s}^{\mathsf{T}}(x^{0}, \alpha)(x(-T) - x^{0}) = 0, \\ L_{u}^{\mathsf{T}}(x^{0}, \alpha)(x(+T) - x^{0}) = 0, \\ \int_{-T}^{T} \langle \dot{y}(t), x(t) - y(t) \rangle dt = 0, \end{cases}$$

where the columns of L_s and L_u span the orthogonal complements to $T^u = T_{x^0} W^u(x^0)$ and $T^s = T_{x^0} W^s(x^0)$, resp.

• Assume the eigenvalues of $A = f_x(x^0, \alpha)$ are arranged as follows:

$$\Re(\mu_{n_s}) \leq \cdots \leq \Re(\mu_1) < 0 < \Re(\lambda_1) \leq \cdots \leq \Re(\lambda_{n_u})$$

If $V^* = \{v_1^*, \dots, v_{n_s}^*\}$ and $W^* = \{w_1^*, \dots, w_{n_u}^*\}$ span the stable and unstable eigenspaces of A^{T} , then $L_s = [V^*]$ and $L_u = [W^*]$.

• Let (μ, λ) satisfy $\Re(\mu_1) < \mu < 0 < \lambda < \Re(\lambda_1)$ and

 $\omega = \min(|\mu|, \lambda).$

Th. 1 (Beyn) There is a locally unique solution to the truncated problem for a regular homoclinic orbit with the $(x(\cdot), \alpha)$ -error that is $O(e^{-2\omega T})$.

Remarks:

1. If W^u is **one-dimensional**, one can use the explicit boundary conditions

$$\begin{aligned} x(-T) - (x^0 + \varepsilon w_1) &= 0, \\ \langle w_1^*, x(T) - x^0 \rangle &= 0, \end{aligned}$$

where $Aw_1 = \lambda_1 w_1$ and $A^{\top} w_1^* = \lambda_1 w_1^*$, without the integral phase condition.

- 2. Implemented in MATCONT with possibilities to start
 - (i) from a large period cycle;
 - (ii) by homotopy.
 - (iii) from codim 2 BT-bifurcations of equilibria.

3. Continuation of invariant subspaces

Th. 2 (Smooth Schur Block Factorization) Any paramter-dependent matrix $A(s) \in \mathbb{R}^{n \times n}$ with nontrivial stable and unstable eigenspaces can be written as

$$A(s) = Q(s) \begin{bmatrix} R_{11}(s) & R_{12}(s) \\ 0 & R_{22}(s) \end{bmatrix} Q^{\mathsf{T}}(s),$$

where $Q(s) = [Q_1(s) \quad Q_2(s)]$ such that

- Q(s) is orthogonal, i.e. $Q^{\top}(s)Q(s) = I_n$;
- the eigenvalues of $R_{11}(s) \in \mathbb{R}^{m \times m}$ are the unstable eigenvalues of A(s), while the eigenvalues of $R_{22}(s) \in \mathbb{R}^{(n-m) \times (n-m)}$ are the remaining (n-m) eigenvalues of A(s);
- the columns of $Q_1(s) \in \mathbb{R}^{n \times m}$ span the eigenspace $\mathcal{E}(s)$ of A(s) corresponding to its m unstable eigenvalues;
- the columns of $Q_2(s) \in \mathbb{R}^{n \times (n-m)}$ span the orthogonal complement $\mathcal{E}^{\perp}(s)$.
- $Q_i(s)$ and $R_{ij}(s)$ have the same smoothness as A(s).

Then holds the **invariant subspace relation**:

 $Q_2^{\mathsf{T}}(s)A(s)Q_1(s) = 0.$

CIS-algorithm [Dieci & Friedman]

• Define

$$\begin{bmatrix} T_{11}(s) & T_{12}(s) \\ T_{21}(s) & T_{22}(s) \end{bmatrix} = Q^{\mathsf{T}}(0)A(s)Q(0)$$

for small |s|, where $T_{11}(s) \in \mathbb{R}^{m \times m}$.

• Compute $Y \in \mathbb{R}^{(n-m) \times m}$ satisfying the **Riccati matrix equation**

$$YT_{11}(s) - T_{22}(s)Y + YT_{12}(s)Y = T_{21}(s).$$

• Then Q(s) = Q(0)U(s) where

$$U(s) = \begin{bmatrix} U_1(s) & U_2(s) \end{bmatrix}$$

with

$$U_1(s) = \begin{pmatrix} I_m \\ Y \end{pmatrix} (I_{n-m} + Y^{\mathsf{T}}Y)^{-\frac{1}{2}},$$

$$U_2(s) = \begin{pmatrix} -Y^{\mathsf{T}} \\ I_{n-m} \end{pmatrix} (I_{n-m} + YY^{\mathsf{T}})^{-\frac{1}{2}},$$

so that columns of $Q_1(s) = Q(0)U_1(s)$ and $Q_2(s) = Q(0)U_2(s)$ form orthogonal bases in $\mathcal{E}(s)$ and $\mathcal{E}^{\perp}(s)$.

• In MATCONT, two Riccati equations are included in the defining BVCP to compute $L_s = [V^*]$ and $L_u = [W^*]$.

4. Detection of higher-order homoclinic singularities

- fold or Hopf bifurcations of x^0 ;
- special eigenvalue configurations (e.g. $\sigma = \Re(\mu_1) + \Re(\lambda_1) = 0$ or $\mu_1 \mu_2 = 0$);
- change of global topology of W^s and W^n (orbit and inclination flips);
- higher nontransversality.

5. Cycle-to-cycle connections in 3D ODEs

 $\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \alpha \in \mathbb{R}^p.$

- Let O^- be a limit cycle with only one (trivial) multiplier satisfying $|\mu| = 1$ and having dim $W^u_- = m^-_u$.
- Let O^+ be a limit cycle with only one (trivial) multiplier satisfying $|\mu| = 1$ and having dim $W^s_+ = m^+_s$.
- Let x[±](t) be periodic solutions (with minimal periods T[±]) corresponding to O[±] and M[±] the corresponding monodromy matrices, i.e. M(T[±]) where

$$\dot{M} = f_x(x^{\pm}(t), \alpha)M, \quad M(0) = I_n.$$

Isolated families of connecting orbits

- Beyn's equality: $p = n m_s^+ m_u^- + 2$.
- \bullet Heteroclinic cycle-to-cycle connections in \mathbb{R}^3

heteroclinic orbit

 \bullet Homoclinic cycle-to-cycle connections in \mathbb{R}^3

 homoclinic orbit to a hyperbolic cycle ⇒ infinite number of cycles (Poincaré homoclinic structure).

Truncated **BVCP**

- The connecting solution u(t) is **truncated** to an interval $[\tau_{-}, \tau_{+}]$.
- The points $u(\tau_+)$ and $u(\tau_-)$ are required to belong to the linear subspaces that are tangent to the stable and unstable invariant manifolds of O^+ and O^- , respectively:

$$\begin{cases} L_{+}^{\mathsf{T}}(u(\tau_{+}) - x^{+}(0)) = 0, \\ L_{-}^{\mathsf{T}}(u(\tau_{-}) - x^{-}(0)) = 0. \end{cases}$$

• Generically, the truncated BVP composed of the ODE, the above projection BC's, and a phase condition on u, has a unique solution family $(\hat{u}, \hat{\alpha})$, provided that the ODE has a connecting solution family satisfying the pahase condition and Beyn's equality.

Th. 3 (Pampel–Dieci–Rebaza) If u is a generic connecting solution to the ODE at parameter value α , then the following estimate holds:

$$\|(u|_{[\tau_{-},\tau_{+}]},\alpha) - (\widehat{u},\widehat{\alpha})\| \leq C e^{-2\min(\mu_{-}|\tau_{-}|,\mu_{+}|\tau_{+}|)},$$

where

- $\|\cdot\|$ is an appropriate norm in the space $C^1([\tau_-, \tau_+], \mathbb{R}^n) \times \mathbb{R}^p$,
- $u|_{[\tau_-,\tau_+]}$ is the restriction of u to the truncation interval,
- μ_{\pm} are determined by the eigenvalues of the monodromy matrices M^{\pm} .

Adjoint variational equation: $\dot{w} = -f_x^{\top}(x^{\pm}(t), \alpha)w, \quad w \in \mathbb{R}^n.$

Let N(t) be the solution to

$$\dot{N} = -f_x^{\mathsf{T}}(x^{\pm}(t), \alpha)N, \quad N(0) = I_n.$$

Then $N(T^{\pm}) = [M^{-1}(T^{\pm})]^{\top}$.

The defining BVCP in 3D: Geometry

Cycle-related equations:

• Periodic solutions:

$$\begin{cases} \dot{x}^{\pm} - f(x^{\pm}, \alpha) = 0, \\ x^{\pm}(0) - x^{\pm}(T^{\pm}) = 0. \end{cases}$$

• Adjoint eigenfunctions: $\mu^+ = \frac{1}{\mu_u^+}$, $\mu^- = \frac{1}{\mu_s^-}$.

$$\begin{cases} \dot{w}^{\pm} + f_u^{\top}(x^{\pm}, \alpha) w^{\pm} = 0, \\ w^{\pm}(T^{\pm}) - \mu^{\pm} w^{\pm}(0) = 0, \\ \langle w^{\pm}(0), w^{\pm}(0) \rangle - 1 = 0, \end{cases}$$

or equivalently

$$\begin{cases} \dot{w}^{\pm} + f_u^{\top}(x^{\pm}, \alpha)w^{\pm} + \lambda^{\pm}w^{\pm} &= 0 ,\\ w^{\pm}(T^{\pm}) - s^{\pm}w^{\pm}(0) &= 0 ,\\ \langle w^{\pm}(0), w^{\pm}(0) \rangle - 1 &= 0 , \end{cases}$$

where $\lambda^{\pm} = \ln |\mu^{\pm}|, \ s^{\pm} = \operatorname{sign}(\mu^{\pm}).$

• Projection BC: $\langle w^{\pm}(0), u(\tau_{\pm}) - x^{\pm}(0) \rangle = 0.$

Connection-related equations:

• The equation for the connection:

$$\dot{u}-f(u,\alpha)=0.$$

- We need the base points $x^{\pm}(0)$ to move freely and independently upon each other along the corresponding cycles O^{\pm} .
- We require the end-point of the connection to belong to a plane orthogonal to the vector $f(x^+(0), \alpha)$, and the starting point of the connection to belong to a plane orthogonal to the vector $f(x^-(0), \alpha)$:

$$\langle f(x^{\pm}(0), \alpha), u(\tau_{\pm}) - x^{\pm}(0) \rangle = 0$$
.

The defining BVCP in 3D

$$\begin{aligned} \dot{x}^{\pm} - T^{\pm} f(x^{\pm}, \alpha) &= 0, \\ x^{\pm}(0) - x^{\pm}(1) &= 0, \\ \dot{w}^{\pm} + T^{\pm} f_{u}^{\top}(x^{\pm}, \alpha) w^{\pm} + \lambda^{\pm} w^{\pm} &= 0, \\ w^{\pm}(1) - s^{\pm} w^{\pm}(0) &= 0, \\ \langle w^{\pm}(0), w^{\pm}(0) \rangle - 1 &= 0, \\ \dot{w}^{\pm}(0), w^{\pm}(0) \rangle - 1 &= 0, \\ \dot{u} - T f(u, \alpha) &= 0, \\ \langle f(x^{+}(0), \alpha), u(1) - x^{+}(0) \rangle &= 0, \\ \langle f(x^{-}(0), \alpha), u(0) - x^{-}(0) \rangle &= 0, \\ \langle w^{+}(0), u(1) - x^{+}(0) \rangle &= 0, \\ \langle w^{-}(0), u(0) - x^{-}(0) \rangle &= 0, \\ \| u(0) - x^{-}(0) \|^{2} - \varepsilon^{2} &= 0. \end{aligned}$$

There is an efficient **homotopy method** to find a starting solution.