4. Computation of normal forms for LP and Hopf bifurcations

4.1. Normal forms on center manifolds
4.2. Fredholm's Alternative
4.3. Critical LP-coefficient
4.4. Critical H-coefficient
4.5. Approximation of multilinear forms by finite differences

4.1. Normal forms on center manifolds

- LP: $\dot{\xi}=\beta+b \xi^{2}, b \neq 0$

Equilibria: $\beta+b \xi^{2}=0 \Rightarrow \xi_{1,2}= \pm \sqrt{-\frac{\beta}{b}}$

- $\mathrm{H}: \dot{\xi}=(\beta+i \omega) \xi+c \xi|\xi|^{2}, l_{1}=\frac{1}{\omega} \Re(c) \neq 0$

$$
l_{1}<0
$$

$$
l_{1}>0
$$

Limit cycle:

$$
\left\{\begin{array}{rl}
\dot{\rho} & =\rho\left(\beta+\Re(c) \rho^{2}\right), \\
\dot{\varphi} & =\omega+\Im(c) \rho^{2},
\end{array} \Rightarrow \rho_{0}=\sqrt{-\frac{\beta}{\Re(c)}}\right.
$$

4.2. Fredholm's Alternative

- Lemma 1 The linear system $A x=b$ with $b \in \mathbb{R}^{n}$ and a singular $n \times n$ real matrix A is solvable if and only if $\langle p, b\rangle=0$ for all p satisfying $A^{\top} p=0$.

Indeed, $\mathbb{R}^{n}=L \oplus R$ with $L \perp R$, where

$$
L=\mathcal{N}\left(A^{\top}\right)=\left\{p \in \mathbb{R}^{n}: A^{T} p=0\right\}
$$

and

$$
R=\left\{x \in \mathbb{R}^{n}: x=A y \text { for some } y \in \mathbb{R}^{n}\right\}
$$

The proof is completed by showing that the orthogonal complement L^{\perp} to L coincides with R.

- In the complex case:

$$
\begin{aligned}
\mathbb{R}^{n} & \Rightarrow \mathbb{C}^{n} \\
\langle p, b\rangle & =\bar{p}^{\top} b \\
A^{\top} & \Rightarrow A^{*}=\bar{A}^{\top}
\end{aligned}
$$

4.3. Critical LP-coefficient b

- Let $A q=A^{T} p=0$ with $\langle q, q\rangle=\langle p, q\rangle=1$.
- Write the RHS at the bifurcation as

$$
F(u)=A u+\frac{1}{2} B(u, u)+O\left(\|u\|^{3}\right)
$$

and locally represent the center manifold W_{0}^{c} as the graph of a function $H: \mathbb{R} \rightarrow \mathbb{R}^{n}$,
$u=H(\xi)=\xi q+\frac{1}{2} h_{2} \xi^{2}+O\left(\xi^{3}\right), \quad \xi \in \mathbb{R}, h_{2} \in \mathbb{R}^{n}$.
The restriction of $\dot{u}=F(u)$ to W_{0}^{c} is

$$
\dot{\xi}=G(\xi)=b \xi^{2}+O\left(\xi^{3}\right)
$$

- The invariance of the center manifold $H_{\xi}(\xi) \dot{\xi}=$ $F(H(\xi))$ implies

$$
H_{\xi}(\xi) G(\xi)=F(H(\xi))
$$

Substitute all expansions into this homological equation and collect the coefficients of the ξ^{j}-terms.

We have

$$
\begin{gathered}
A\left(\xi q+\frac{1}{2} h_{2} \xi^{2}\right)+\frac{1}{2} B(\xi q, \xi q)+O\left(|\xi|^{3}\right) \\
=b \xi^{2} q+b \xi^{3} h_{2}+O\left(|\xi|^{4}\right)
\end{gathered}
$$

- The ξ-terms give the identity: $A q=0$.
- The ξ^{2}-terms give the equation for h_{2} :

$$
A h_{2}=-B(q, q)+2 b q
$$

It is singular and its Fredholm solvability

$$
\langle p,-B(q, q)+2 b q\rangle=0
$$

implies

$$
b=\frac{1}{2}\langle p, B(q, q)\rangle
$$

4.4. Critical H-coefficient c

- $A q=i \omega_{0} q, A^{\top} p=-i \omega_{0} p,\langle q, q\rangle=\langle p, q\rangle=1$.
- Write

$$
F(u)=A u+\frac{1}{2} B(u, u)+\frac{1}{3!} C(u, u, u)+O\left(\|u\|^{4}\right)
$$

and locally represent the center manifold W_{0}^{c} as the graph of a function $H: \mathbb{C} \rightarrow \mathbb{R}^{n}$,

$$
\begin{aligned}
u=H(\xi, \bar{\xi})= & \xi q+\bar{\xi} \bar{q}+ \\
& \sum_{2 \leq j+k \leq 3} \frac{1}{j!k!} h_{j k} \xi^{j} \bar{\xi}^{k}+O\left(|\xi|^{4}\right) .
\end{aligned}
$$

The restriction of $\dot{u}=F(u)$ to W_{0}^{c} is

$$
\dot{\xi}=G(\xi, \bar{\xi})=i \omega_{0} \xi+c \xi|\xi|^{2}+O\left(|\xi|^{4}\right) .
$$

- The invariance of W_{0}^{c}

$$
H_{\xi}(\xi, \bar{\xi}) \dot{\xi}+H_{\bar{\xi}}(\xi, \bar{\xi}) \dot{\bar{\xi}}=F(H(\xi, \bar{\xi}))
$$

implies

$$
H_{\xi}(\xi, \bar{\xi}) G(\xi, \bar{\xi})+H_{\bar{\xi}}(\xi, \bar{\xi}) \bar{G}(\xi, \bar{\xi})=F(H(\xi, \bar{\xi}))
$$

- Quadratic ξ^{2} - and $|\xi|^{2}$-terms give

$$
\begin{aligned}
h_{20} & =\left(2 i \omega_{0} I_{n}-A\right)^{-1} B(q, q) \\
h_{11} & =-A^{-1} B(q, \bar{q})
\end{aligned}
$$

- Cubic $w^{2} \bar{w}$-terms give the singular system

$$
\begin{aligned}
\left(i \omega_{0} I_{n}-A\right) h_{21}= & C(q, q, \bar{q}) \\
& +B\left(\bar{q}, h_{20}\right)+2 B\left(q, h_{11}\right) \\
& -2 c q
\end{aligned}
$$

The solvability of this system implies

$$
\begin{aligned}
c= & \frac{1}{2}\langle p, C(q, q, \bar{q}) \\
& +B\left(\bar{q},\left(2 i \omega_{0} I_{n}-A\right)^{-1} B(q, q)\right) \\
& \left.-2 B\left(q, A^{-1} B(q, \bar{q})\right)\right\rangle
\end{aligned}
$$

- The first Lyapunov coefficient

$$
l_{1}=\frac{1}{\omega_{0}} \Re(c) .
$$

4.5. Approximation of multilinear forms by finite differences

- Finite-difference approximation of directional derivatives:

$$
\begin{aligned}
B(q, q)= & \frac{1}{h^{2}}\left[f\left(u_{0}+h q, \alpha_{0}\right)+f\left(u_{0}-h q, \alpha_{0}\right)\right] \\
& +O\left(h^{2}\right) \\
C(r, r, r)= & \frac{1}{8 h^{3}}\left[f\left(u_{0}+3 h r, \alpha_{0}\right)-3 f\left(u_{0}+h r, \alpha_{0}\right)\right. \\
& \left.+3 f\left(u_{0}-h r, \alpha_{0}\right)-f\left(u_{0}-3 h r, \alpha_{0}\right)\right] \\
& +O\left(h^{2}\right) .
\end{aligned}
$$

- Polarization identities:

$$
\begin{aligned}
B(q, r)=\frac{1}{4}[B(q+ & r, q+r)-B(q-r, q-r)] \\
C(q, q, r)= & \frac{1}{6}[C(q+r, q+r, q+r) \\
& -C(q-r, q-r, q-r)] \\
& -\frac{1}{3} C(r, r, r)
\end{aligned}
$$

5. Detection of codim 2 bifurcations

- codim 2 cases along the LP-curve:
- Bogdanov-Takens (BT): $\lambda_{1,2}=0$ $\left(\psi_{B T}=\langle p, q\rangle\right.$ with $\left.\langle q, q\rangle=\langle p, p\rangle=1\right)$
- fold-Hopf (ZH): $\lambda_{1}=0, \lambda_{2,3}= \pm i \omega_{0}$ $\left(\psi_{Z H}=\operatorname{det}\left(2 A \odot I_{n}\right)\right)$
$-\operatorname{cusp}(C P): \lambda_{1}=0, b=0\left(\psi_{C P}=b\right)$
- Critical cases along the H-curve:
- Bogdanov-Takens (BT): $\lambda_{1,2}=0$ $\left(\psi_{B T}=\kappa\right)$
- fold-Hopf (ZH): $\lambda_{1,2}= \pm i \omega_{0}, \lambda_{3}=0$ $\left(\psi_{Z H}=\operatorname{det} A\right)$
- double Hopf (HH): $\lambda_{1,2}= \pm i \omega_{0}, \lambda_{3,4}=$ $\pm i \omega_{1}$
$\left(\psi_{H H}=\operatorname{det}\left(2 A^{\perp} \odot I_{n-2}\right)\right.$
- Bautin (GH): $\lambda_{1,2}= \pm i \omega_{0}, l_{1}=0$

$$
\left(\psi_{G H}=l_{1}\right)
$$

