Yuri A. Kuznetsov

UvA Lecture 1:

One-Parameter Bifurcations of Fixed Points of Maps

Contents:

1. Critical cases

2. Fold bifurcation
3. Flip (period-doubling) bifurcation

1. Critical cases

Consider a one-parameter system

$$
x \mapsto \tilde{x}=f(x, \alpha), \quad x, \tilde{x} \in \mathbf{R}^{n}, \alpha \in \mathbf{R}^{1} .
$$

The fixed-point manifold

$$
f(x, \alpha)-x=0
$$

is a smooth curve in \mathbf{R}^{n+1}, provided rank $J=n$, where $J=\left[f_{x}-I_{n} \mid f_{\alpha}\right]$.

Let $\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\}$ be eigenvalues of f_{x}. Critical cases: (a) LP; (b) PD; (c) NS

(a)

(b)

(c)

2. Fold (limit point) bifurcation

Example 1 (Fold normal form)
Consider

$$
x \mapsto \alpha+x+x^{2} \equiv f(x, \alpha) \equiv f_{\alpha}(x), \quad x, \alpha \in \mathbf{R}^{1} .
$$

At $\alpha=0$ this system has a nonhyperbolic fixed point $x_{0}=0$ with $\mu=f_{x}(0,0)=1$.

$\alpha<0$

$\alpha=0$

$\alpha>0$

For $\alpha<0$ there are two hyperbolic fixed points

$$
x_{1,2}(\alpha)= \pm \sqrt{-\alpha} .
$$

For $\alpha>0$ there are no fixed points in the system.

Lemma 1 The system

$$
x \mapsto \alpha+x+x^{2}+O\left(x^{3}\right)
$$

is locally topologically equivalent near the origin to the system

$$
x \mapsto \alpha+x+x^{2} . \square
$$

Th. 1 Suppose that a one-dimensional system

$$
x \mapsto f(x, \alpha), \quad x \in \mathbf{R}^{1}, \alpha \in \mathbf{R}^{1}
$$

with smooth f, has at $\alpha=0$ the fixed point $x=0$, and let $\mu=f_{x}(0,0)=1$. Assume that the following conditions are satisfied:
(A.1) $\quad f_{x x}(0,0) \neq 0 \quad$ (nondegeneracy)
(A.2) $\quad f_{\alpha}(0,0) \neq 0 \quad$ (transversality)

Then there are invertible smooth coordinate and parameter changes transforming the system into

$$
\eta \mapsto \beta+\eta \pm \eta^{2}+O\left(\eta^{3}\right)
$$

Proof: Expand

$$
f(x, \alpha)=f_{0}(\alpha)+f_{1}(\alpha) x+f_{2}(\alpha) x^{2}+O\left(x^{3}\right)
$$

Here $f_{0}(0)=f(0,0)=0, f_{1}(0)=f_{x}(0,0)=1$.
Thus $f_{1}(\alpha)=1+g(\alpha)$, where $g(0)=0$. Let

$$
\xi=x+\delta
$$

where $\delta=\delta(\alpha)$ is to be defined later.

$$
\tilde{\xi}=\tilde{x}+\delta=f(x, \alpha)+\delta=f(\xi-\delta, \alpha)+\delta
$$

Therefore,

$$
\begin{aligned}
\tilde{\xi}= & {\left[f_{0}(\alpha)-g(\alpha) \delta+f_{2}(\alpha) \delta^{2}+O\left(\delta^{3}\right)\right] } \\
& +\xi+\left[g(\alpha)-2 f_{2}(\alpha) \delta+O\left(\delta^{2}\right)\right] \xi \\
& +\left[f_{2}(\alpha)+O(\delta)\right] \xi^{2}+O\left(\xi^{3}\right) .
\end{aligned}
$$

Write the coefficient in front of ξ as

$$
F(\alpha, \delta)=g(\alpha)-2 f_{2}(\alpha) \delta+\delta^{2} \varphi(\alpha, \delta),
$$

where φ is some smooth function. We have $F(0,0)=0,\left.\frac{\partial F}{\partial \delta}\right|_{(0,0)}=-2 f_{2}(0)=f_{x x}(0,0) \neq 0$ by (A.1).

The Implicit Function Theorem gives (local) existence and uniqueness of a smooth function $\delta=\delta(\alpha)$ such that $\delta(0)=0$ and $F(\alpha, \delta(\alpha)) \equiv 0$. Now

$$
\begin{aligned}
\tilde{\xi}= & {\left[f_{0}^{\prime}(0) \alpha+O\left(\alpha^{2}\right)\right]+\xi } \\
& +\left[f_{2}(0)+O(\alpha)\right] \xi^{2}+O\left(\xi^{3}\right) .
\end{aligned}
$$

Consider the ξ-independent term as a new parameter

$$
\mu(\alpha)=f_{0}^{\prime}(0) \alpha+\alpha^{2} \varphi(\alpha) .
$$

We have $\mu(0)=0, \mu^{\prime}(0)=f_{0}^{\prime}(0)=f_{\alpha}(0,0) \neq$ 0 , by (A.2). Therefore, the Inverse Function Theorem implies local existence and uniqueness of a smooth function $\alpha=\alpha(\mu)$ with $\alpha(0)=0$. Now the map reads

$$
\tilde{\xi}=\mu+\xi+a(\mu) \xi^{2}+O\left(\xi^{3}\right)
$$

where $a(\mu)$ is a smooth function, $a(0)=f_{2}(0) \neq$ 0 . Let $\eta=|a(\mu)| \xi$ and $\beta=|a(\mu)| \mu$. Then we get

$$
\tilde{\eta}=\beta+\eta+s \eta^{2}+O\left(\eta^{3}\right),
$$

where $s=\operatorname{sign} a(0)= \pm 1 . \square$

3. Flip (period doubling) bifurcation

Example 2 (Flip normal form) Consider $x \mapsto-(1+\alpha) x+x^{3} \equiv f(x, \alpha) \equiv f_{\alpha}(x), \quad x, \alpha \in \mathbf{R}^{1}$. At $\alpha=0$ this system has a nonhyperbolic fixed point $x_{0}=0$ with $\mu=f_{x}(0,0)=-1$. The second iterate
$f_{\alpha}^{2}(x)=(1+\alpha)^{2} x-\left[(1+\alpha)\left(2+2 \alpha+\alpha^{2}\right)\right] x^{3}+O\left(x^{3}\right)$.

$\alpha<0$

$\alpha=0$

$\alpha>0$

Period-2 cycle $\left\{x_{1}, x_{2}\right\}, x_{1,2}= \pm \sqrt{\alpha}$, appears

Lemma 2 The system

$$
x \mapsto-(1+\alpha) x+x^{3}+O\left(x^{4}\right)
$$

is locally topologically equivalent near the origin to the system

$$
x \mapsto-(1+\alpha) x+x^{3} . \square
$$

Th. 2 Suppose that a one-dimensional system

$$
x \mapsto f(x, \alpha), \quad x \in \mathbf{R}^{1}, \alpha \in \mathbf{R}^{1},
$$

with smooth f, has the fixed point $x_{0}=0$ for all sufficiently small $|\alpha|$, and let $\mu=f_{x}(0,0)=$ -1 . Assume that the following conditions are satisfied:
(B.1) $\quad \frac{1}{2}\left(f_{x x}(0,0)\right)^{2}+\frac{1}{3} f_{x x x}(0,0) \neq 0$; (B.2) $\quad f_{x \alpha}(0,0) \neq 0$.

Then there are smooth invertible coordinate and parameter changes transforming the system into

$$
\eta \mapsto-(1+\beta) \eta \pm \eta^{3}+O\left(\eta^{4}\right) .
$$

Remark: If the map $x \mapsto f(\alpha)$ has a fixed point x_{0} that depends on α, the condition (B.2) has to be modified.

Proof:

Write the Taylor expansion of the function $f(x, \alpha)$ near $x=0$ as
$\tilde{x}=f(x, \alpha)=f_{1}(\alpha) x+f_{2}(\alpha) x^{2}+f_{3}(\alpha) x^{3}+O\left(x^{4}\right)$, where $f_{1}(\alpha)=-[1+g(\alpha)]$ for some smooth function g. Since $g(0)=0$ and

$$
g^{\prime}(0)=f_{x \alpha}(0,0) \neq 0,
$$

according to (B.2), the function g is locally invertible and can be used to introduce a new parameter: $\beta=g(\alpha)$. Thus

$$
\tilde{x}=\mu(\beta) x+a(\beta) x^{2}+b(\beta) x^{3}+O\left(x^{4}\right),
$$

where $\mu(\beta)=-(1+\beta)$, and the functions $a(\beta)$ and $b(\beta)$ are smooth,

$$
a(0)=\frac{1}{2} f_{x x}(0,0), \quad b(0)=\frac{1}{6} f_{x x x}(0,0) .
$$

Perform a smooth change of coordinate:

$$
x=y+\delta y^{2},
$$

where $\delta=\delta(\beta)$ is a smooth function to be defined. The transformation is invertible in some neighborhood of the origin, and its inverse

$$
y=x-\delta x^{2}+2 \delta^{2} x^{3}+O\left(x^{4}\right) .
$$

Therefore

$$
\begin{aligned}
\tilde{y}= & \mu y+\left(a+\delta \mu-\delta \mu^{2}\right) y^{2} \\
& +\left(b+2 \delta a-2 \delta \mu(\delta \mu+a)+2 \delta^{2} \mu^{3}\right) y^{3} \\
& +O\left(y^{4}\right) .
\end{aligned}
$$

Thus, the y^{2}-term can be "killed" for all sufficiently small $|\beta|$ by setting

$$
\delta(\beta)=\frac{a(\beta)}{\mu^{2}(\beta)-\mu(\beta)}
$$

This is valid since $\mu^{2}(0)-\mu(0)=2 \neq 0$ and, thus, the denominator is nonzero for all $|\beta|$ small.

The map takes the form

$$
\begin{aligned}
\tilde{y} & =\mu y+\left(b+\frac{2 a^{2}}{\mu^{2}-\mu}\right) y^{3}+O\left(y^{4}\right) \\
& =-(1+\beta) y+c(\beta) y^{3}+O\left(y^{4}\right)
\end{aligned}
$$

for some smooth function $c(\beta)$,
$c(0)=a^{2}(0)+b(0)=\frac{1}{4}\left(f_{x x}(0,0)\right)^{2}+\frac{1}{6} f_{x x x}(0,0)$.
Notice that $c(0) \neq 0$ by (B.1). The rescaling

$$
y=\frac{\eta}{\sqrt{|c(\beta)|}}
$$

brings the system into the desired form:

$$
\tilde{\eta}=-(1+\beta) \eta+s \eta^{3}+O\left(\eta^{4}\right)
$$

where $s=\operatorname{sign} c(0)= \pm 1 . \square$

Notice that

$$
c(0)=-\left.\frac{1}{12} \frac{\partial^{3}}{\partial x^{3}} f_{\alpha}^{2}(x)\right|_{(x, \alpha)=(0,0)},
$$

where $f_{\alpha}(x)=f(x, \alpha)$

Example 3 (Ricker's equation) The map

$$
x \mapsto f(x, \alpha)=\alpha x e^{-x}
$$

has at $\alpha_{1}=e^{2}=7.38907 \ldots$ the fixed point $x_{1}=2$ with the multiplier $\mu_{1}=-1$ and

$$
c\left(\alpha_{1}\right)=\frac{1}{6}>0 .
$$

Thus, a stable period-2 cycle bifurcates from x_{1}. It exists for $\alpha>\alpha_{1}$ but is stable only for $\left|\alpha-\alpha_{1}\right|$ sufficiently small.

