Yuri A. Kuznetsov

UvA Lecture 2:

One-Parameter Bifurcations of Fixed Points of Maps

Contents:

1. Feigenbaum's universality
2. Neimark-Sacker bifurcation

1. Figenbaum's universality

Consider a space \mathcal{Y} of scalar maps

$$
x \mapsto f(x), \quad f: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1},
$$

satisfying:
(1) $f(x)$ is an even smooth function, $f:[-1,1] \rightarrow$ [-1, 1];
(2) $f^{\prime}(0)=0, x=0$ is the only maximum, $f(0)=1$;
(3) $f(1)=-a<0$;
(4) $b=f(a)>a$;
(5) $f(b)=f^{2}(a)<a$.

The function $f_{\alpha}(x)=1-\alpha x^{2}$ belongs to the class \mathcal{Y} for $\alpha>1$.

For any $f \in \mathcal{Y}$ define the doubling operator:

$$
(T f)(x)=-\frac{1}{a} f(f(-a x)),
$$

where $a=-f(1)$. One can check that $T f \in \mathcal{Y}$.

Lemma 1 The maps $T f$ and f^{2} are topologically equivalent.

Hence, if $T f$ has a periodic orbit of period N, f^{2} has a periodic orbit of the same period and f therefore has a periodic orbit of period $2 N$.

Th. 1 (Fixed-point existence) The map T : $\mathcal{Y} \rightarrow \mathcal{Y}$ has a fixed point $\varphi \in \mathcal{Y}: T \varphi=\varphi$.

It has been found numerically that

$$
\begin{aligned}
\varphi(x)= & 1-1.52763 \ldots x^{2}+0.104815 \ldots x^{4} \\
& +0.0267057 \ldots x^{6}+\ldots
\end{aligned}
$$

Th. 2 (Saddle properties of the fixed point)

 The linear part L of the doubling operator T at its fixed point φ has only one eigenvalue with $|\mu|>1$, namely $\mu_{F}=4.6692 \ldots$:$$
L \psi=\mu_{F} \psi, \quad \psi \in \mathcal{Y}
$$

The rest of the spectrum of L is located strictly inside the unit circle.

Therefore, the fixed point φ has a codim 1 stable invariant manifold $W^{s}(\varphi)$ and a one-dimensional unstable invariant manifold $W^{u}(\varphi)$.

Consider all maps from \mathcal{Y} having a fixed point with multiplier $\mu=-1$. Such maps form a codim 1 manifold $\Sigma \subset \mathcal{Y}$.

Th. 3 (Manifold intersection) The manifold Σ intersects the unstable manifold $W^{u}(\varphi)$ transversally.

The preimages $T^{-k} \Sigma$ will accumulate on $W^{s}(\varphi)$ as $k \rightarrow \infty . T^{-1} \Sigma$ is composed of maps having a cycle of period two with a multiplier $-1, T^{-2} \Sigma$ is formed by maps having a cycle of period four with a multiplier -1 , etc.

Any generic one-parameter dynamical system

$$
x \mapsto f_{\alpha}(x)
$$

with $f_{\alpha} \in \mathcal{Y}$ defines a curve \wedge in \mathcal{Y}. If this curve is sufficiently close to $W^{u}(\varphi)$, it will intersect all the preimages $T^{-k} \Sigma$.

Let ξ be a coordinate along $W^{u}(\varphi)$, and let ξ_{k} denote the coordinate of the intersection of $W^{u}(\varphi)$ with $T^{-k} \Sigma$. The doubling operator restricted to the unstable manifold has the form

$$
\xi \mapsto \mu_{F} \xi+O\left(\xi^{2}\right)
$$

with the inverse given by

$$
\xi \mapsto \frac{1}{\mu_{F}} \xi+O\left(\xi^{2}\right) .
$$

Since

$$
\xi_{k+1}=\frac{1}{\mu_{F}} \xi_{k}+O\left(\xi_{k}^{2}\right),
$$

we have

$$
\frac{\xi_{k}-\xi_{k-1}}{\xi_{k+1}-\xi_{k}} \rightarrow \mu_{F}
$$

as $k \rightarrow \infty$, and so does the sequence of the bifurcation parameter values of f_{α}.

4. Neimark-Sacker bifurcation

Example 4 ("Normal form") Consider

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}} \mapsto(1+\alpha)\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x_{1}}{x_{2}}+ \\
& \left(x_{1}^{2}+x_{2}^{2}\right)\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right)\binom{x_{1}}{x_{2}},
\end{aligned}
$$

where $\theta=\theta(\alpha), a=a(\alpha)$, and $b=b(\alpha)$ are smooth functions, $a(0)<0$; and $0<\theta(0)<\pi$.

Introduce the complex variable $z=x_{1}+i x_{2}$ and set $d=a+i b$. Then

$$
z \mapsto e^{i \theta} z\left(1+\alpha+d|z|^{2}\right)=\mu z+c z|z|^{2},
$$

where $\mu=\mu(\alpha)=(1+\alpha) e^{i \theta(\alpha)}$ and $c=c(\alpha)=$ $e^{i \theta(\alpha)} d(\alpha)$. Using $z=\rho e^{i \varphi}$, we obtain the following polar form of the map:

$$
\left\{\begin{aligned}
\rho & \mapsto \rho\left(1+\alpha+a(\alpha) \rho^{2}\right)+\rho^{4} R_{\alpha}(\rho) \\
\varphi & \mapsto \varphi+\theta(\alpha)+\rho^{2} Q_{\alpha}(\rho),
\end{aligned}\right.
$$

for smooth functions R and Q. This system has a fixed point at the origin for all α with multipliers

$$
\mu_{1,2}(\alpha)=(1+\alpha) e^{ \pm i \theta(\alpha)}
$$

For $\alpha \leq 0$ the origin is stable. For $\alpha>0$ the ρ-map has an additional stable fixed point

$$
\rho_{0}(\alpha)=\sqrt{-\frac{\alpha}{a(\alpha)}}+O(\alpha)
$$

corresponding to a closed invariant curve of the planar map.

$\alpha<0$

$\alpha=0$

$\alpha>0$

Let $\Delta \varphi=\theta(\alpha)+\rho_{0}^{2} Q_{\alpha}\left(\rho_{0}\right)$. If

$$
\frac{\Delta \varphi}{2 \pi}=\frac{p}{q}
$$

with integer p and q, all points on the invariant circle are cycles of period q of the p th iterate of the map. If the ratio is irrational, all orbits are dense in the circle.

Lemma 2 The map

$$
\tilde{z}=e^{i \theta(\alpha)} z\left(1+\alpha+d(\alpha)|z|^{2}\right)+O\left(|z|^{4}\right),
$$

where $d(\alpha)=a(\alpha)+i b(\alpha) ; a(\alpha), b(\alpha)$, and $\theta(\alpha)$ are smooth real-valued functions, $a(0)<0,0<$ $\theta(0)<\pi$, has a stable closed invariant curve for all sufficiently small $\alpha>0$.

Orbit structure on the closed invariant curve is different from that of Example 4. Generically, there is only a finite number of cycles on the closed invariant curve.

The cycles exist for $\alpha \in\left(\alpha_{1}^{(j)}, \alpha_{2}^{(j)}\right), j=1,2, \ldots$, and disappear at $\alpha_{1,2}^{(j)}$ through the fold bifurcation. The bifurcating invariant closed curve has finite smoothness that increases as $\alpha \rightarrow 0$.

Consider a planar map

$$
x \mapsto A(\alpha) x+F(x, \alpha), x \in \mathbf{R}^{2}, \alpha \in \mathbf{R}^{1},
$$

where $F=O\left(\|x\|^{2}\right)$ is smooth, and $A(\alpha)$ has two multipliers

$$
\mu_{1,2}(\alpha)=r(\alpha) e^{ \pm i \psi(\alpha)}
$$

with $r(0)=1, \psi(0)=\theta_{0}, 0<\theta_{0}<\pi$. One has $r(\alpha)=1+\beta(\alpha)$, for some $\beta=\beta(\alpha), \beta(0)=0$. Suppose $\beta^{\prime}(0) \neq 0$, then β can be used as a new parameter, and we have $\mu_{1}=\mu(\beta), \mu_{2}=\bar{\mu}(\beta)$,

$$
\mu(\beta)=(1+\beta) e^{i \theta(\beta)}, \theta(0)=\theta_{0}
$$

Write

$$
x \mapsto A(\beta) x+F(x, \beta) .
$$

Lemma 3 By introducing a complex variable z, the map can be written for sufficiently small $|\beta|$ as

$$
z \mapsto \mu(\beta) z+g(z, \bar{z}, \beta),
$$

where $g=O\left(|z|^{2}\right)$ is a smooth function of (z, \bar{z}, β).

Proof:

Let $q(\beta), p(\beta) \in \mathbf{C}^{2}$ be complex vectors such that

$$
A(\beta) q(\beta)=\mu(\beta) q(\beta), \quad A^{T}(\beta) p(\beta)=\overline{\mu(\beta)} p(\beta)
$$

Normalize them according to

$$
\langle p(\beta), q(\beta)\rangle=1,
$$

where $\langle p, q\rangle=\bar{p}_{1} q_{1}+\bar{p}_{2} q_{2}$.
Any vector $x \in \mathbf{R}^{2}$ can be uniquely represented for small α as

$$
x=z q(\beta)+\bar{z} \bar{q}(\beta) .
$$

We have an explicit formula for z, namely

$$
z=\langle p(\beta), x\rangle
$$

since $\langle p(\beta), \bar{q}(\beta)\rangle=0$. Indeed,

$$
\langle p, \bar{q}\rangle=\left\langle p, \frac{1}{\bar{\mu}} A \bar{q}\right\rangle=\frac{1}{\bar{\mu}}\left\langle A^{T} p, \bar{q}\right\rangle=\frac{\mu}{\bar{\mu}}\langle p, \bar{q}\rangle .
$$

Therefore

$$
\left(1-\frac{\mu}{\bar{\mu}}\right)\langle p, \bar{q}\rangle=0
$$

with $\mu \neq \bar{\mu}$ because for all sufficiently small $|\beta|$ we have $\theta(\beta)>0$. The complex variable z satisfies the equation

$$
z \mapsto \mu(\beta) z+\langle p(\beta), F(z q(\beta)+\bar{z} \bar{q}(\beta), \beta)\rangle,
$$

having the required form with

$$
g(z, \bar{z}, \beta)=\langle p(\beta), F(z q(\beta)+\bar{z} \bar{q}(\beta), \beta)\rangle .
$$

Write g as a formal Taylor series in two complex variables (z and \bar{z}):

$$
g(z, \bar{z}, \alpha)=\sum_{k+l \geq 2} \frac{1}{k!l!} g_{k l}(\alpha) z^{k} \bar{z}^{l},
$$

where

$$
g_{k l}(\beta)=\left.\frac{\partial^{k+l}}{\partial z^{k} \partial \bar{z}^{l}}\langle p(\beta), F(z q(\beta)+\bar{z} \bar{q}(\beta), \beta)\rangle\right|_{z=0},
$$

for $k+l \geq 2, k, l=0,1, \ldots$

Lemma 4 The map

$$
z \mapsto \mu z+\frac{g_{20}}{2} z^{2}+g_{11} z \bar{z}+\frac{g_{02}}{2} \bar{z}^{2}+O\left(|z|^{3}\right)
$$

where $\mu=\mu(\beta)=(1+\beta) e^{i \theta(\beta)}, g_{i j}=g_{i j}(\beta)$,
can be transformed by an invertible parameterdependent change of complex coordinate

$$
z=w+\frac{h_{20}}{2} w^{2}+h_{11} w \bar{w}+\frac{h_{02}}{2} \bar{w}^{2}
$$

for all sufficiently small $|\beta|$, into a map without quadratic terms:

$$
w \mapsto \mu w+O\left(|w|^{3}\right)
$$

provided that

$$
e^{i \theta_{0}} \neq 1 \quad \text { and } \quad e^{3 i \theta_{0}} \neq 1
$$

Proof:
The inverse transformation is given by

$$
w=z-\frac{h_{20}}{2} z^{2}-h_{11} z \bar{z}-\frac{h_{02}}{2} \bar{z}^{2}+O\left(|z|^{3}\right)
$$

In the new coordinate w, the map takes the form

$$
\begin{aligned}
\tilde{w}=\mu w & +\frac{1}{2}\left(g_{20}+\left(\mu-\mu^{2}\right) h_{20}\right) w^{2} \\
& +\left(g_{11}+\left(\mu-|\mu|^{2}\right) h_{11}\right) w \bar{w} \\
& +\frac{1}{2}\left(g_{02}+\left(\mu-\bar{\mu}^{2}\right) h_{02}\right) \bar{w}^{2} \\
& +O\left(|w|^{3}\right) .
\end{aligned}
$$

Thus, by setting

$$
h_{20}=\frac{g_{20}}{\mu^{2}-\mu}, \quad h_{11}=\frac{g_{11}}{|\mu|^{2}-\mu}, h_{02}=\frac{g_{02}}{\bar{\mu}^{2}-\mu}
$$

we "kill" all the quadratic terms, if the denominators are nonzero for all sufficiently small $|\beta|$ including $\beta=0$. Indeed,

$$
\begin{aligned}
\mu^{2}(0)-\mu(0) & =e^{i \theta_{0}}\left(e^{i \theta_{0}}-1\right) \neq 0 \\
|\mu(0)|^{2}-\mu(0) & =1-e^{i \theta_{0}} \neq 0 \\
\bar{\mu}(0)^{2}-\mu(0) & =e^{i \theta_{0}}\left(e^{-3 i \theta_{0}}-1\right) \neq 0
\end{aligned}
$$

due to our restrictions on θ_{0}. \square

Def. 1 The conditions

$$
e^{i k \theta_{0}}=1, \quad k=1,2,3,4
$$

are called strong resonances.

Lemma 5 The map

$z \mapsto \mu z+\frac{g_{30}}{6} z^{3}+\frac{g_{21}}{2} z^{2} \bar{z}+\frac{g_{12}}{2} z \bar{z}^{2}+\frac{g_{03}}{6} \bar{z}^{3}+O\left(|z|^{4}\right)$,
where $\mu=\mu(\beta)=(1+\beta) e^{i \theta(\beta)}, g_{i j}=g_{i j}(\beta)$,
can be transformed by an invertible parameterdependent change of coordinates

$$
z=w+\frac{h_{30}}{6} w^{3}+\frac{h_{21}}{2} w^{2} \bar{w}+\frac{h_{12}}{2} w \bar{w}^{2}+\frac{h_{03}}{6} \bar{w}^{3}
$$

for all sufficiently small $|\beta|$, into a map with only one cubic term:

$$
w \mapsto \mu w+c_{1} w^{2} \bar{w}+O\left(|w|^{4}\right)
$$

$c_{1}=\frac{1}{2} g_{21}$, provided that

$$
e^{2 i \theta_{0}} \neq 1 \quad \text { and } \quad e^{4 i \theta_{0}} \neq 1
$$

Proof:

The inverse transformation is given by

$$
w=z-\frac{h_{30}}{6} z^{3}-\frac{h_{21}}{2} z^{2} \bar{z}-\frac{h_{12}}{2} z \bar{z}^{2}-\frac{h_{03}}{6} \bar{z}^{3}+O\left(|z|^{4}\right)
$$

$$
\begin{aligned}
\tilde{w}= & \lambda w+\frac{1}{6}\left(g_{30}+\left(\mu-\mu^{3}\right) h_{30}\right) w^{3} \\
& +\frac{1}{2}\left(g_{21}+\left(\mu-\mu|\mu|^{2}\right) h_{21}\right) w^{2} \bar{w} \\
& +\frac{1}{2}\left(g_{12}+\left(\mu-\bar{\mu}|\mu|^{2}\right) h_{12}\right) w \bar{w}^{2} \\
& +\frac{1}{6}\left(g_{03}+\left(\mu-\bar{\mu}^{3}\right) h_{03}\right) \bar{w}^{3}+O\left(|w|^{4}\right) .
\end{aligned}
$$

Thus, by setting

$$
h_{30}=\frac{g_{30}}{\mu^{3}-\mu}, \quad h_{12}=\frac{g_{12}}{\bar{\mu}|\mu|^{2}-\mu}, h_{03}=\frac{g_{03}}{\bar{\mu}^{3}-\mu},
$$

we can annihilate all cubic terms in the resulting map except the $w^{2} \bar{w}$-term, since all the involved denominators are nonzero for all sufficiently small $|\beta|$. One can also try to eliminate the $w^{2} \bar{w}$-term by setting

$$
h_{21}=\frac{g_{21}}{\mu\left(1-|\mu|^{2}\right)} .
$$

However, the denominator vanishes at $\beta=0$ for all θ_{0}. To obtain a transformation that is smoothly dependent on β, set $h_{21}=0$, which results in

$$
c_{1}=\frac{g_{21}}{2} . \square
$$

Combining Lemmas 4 and 5, we obtain

$$
\begin{aligned}
w & \mapsto(1+\beta) e^{i \theta(\beta)} w+c_{1} w|w|^{2}+O\left(|w|^{4}\right) \\
& =e^{i \theta(\beta)}\left(1+\beta+d w|w|^{2}\right)+O\left(|w|^{2}\right),
\end{aligned}
$$

where $a(0)=\operatorname{Re} d(0)=\operatorname{Re}\left(e^{-i \theta_{0}} c_{1}(0)\right)$. One has

$$
\begin{aligned}
a(0) & =\operatorname{Re}\left(\frac{e^{-i \theta_{0}} g_{21}^{0}}{2}\right)-\frac{1}{2}\left|g_{11}^{0}\right|^{2}-\frac{1}{4}\left|g_{02}^{0}\right|^{2} \\
& -\operatorname{Re}\left(\frac{\left(1-2 e^{i \theta_{0}}\right) e^{-2 i \theta_{0}}}{2\left(1-e^{i \theta_{0}}\right)} g_{20}^{0} g_{11}^{0}\right) .
\end{aligned}
$$

Th. 4 For any generic two-dimensional one-parameter system $x \mapsto f(x, \alpha)$, having a fixed point $x_{0}(\alpha)$ with multipliers

$$
\mu_{1,2}(\alpha)=r(\alpha) e^{ \pm i \theta(\alpha)}
$$

$r(0)=1,0<\theta(0)<\pi$, there is a neighborhood of $x_{0}(0)$ in which a unique closed invariant curve bifurcates from the fixed point as α passes through zero.

Genericty conditions:

(C.1) $r^{\prime}(0) \neq 0$;
(C.2) $e^{i k \theta(0)} \neq 1$ for $k=1,2,3,4$;
(C.3) $a(0) \neq 0$.

