Applied Bifurcation Theory: Practicum 1, 15 July 2019

For each planar system below, construct its phase portrait for $\alpha = 0$ and for small $\alpha < 0$ and $\alpha > 0$ using the MATLAB tool pplane9. Identify the occurring bifurcation and try to support your conclusions by analytical arguments as outlined below.

Ex.1 Saddle-node homoclinic bifurcation

$$\begin{cases} \dot{x} = x(1-x^2-y^2) - y(1+\alpha+x) \\ \dot{y} = x(1+\alpha+x) + y(1-x^2-y^2) \end{cases}$$
(1)

- 1. Rewrite the system in the polar coordinates (r, φ) by substituting $x = r \cos \varphi$, $y = r \sin \varphi$.
- 2. Prove that the unit circle r = 1 is invariant and study equilibria on this circle.
- 3. Compute the normal form coefficient a for the saddle-node (fold) bifurcation at $\alpha = 0$.

Ex.2 Andronov-Hopf bifurcation

$$\ddot{x} + \dot{x}^3 - 2\alpha \dot{x} + x = 0 \tag{2}$$

Rewrite this equation as a planar system by introducing $y = -\dot{x}$.

- 1. Consider the complex variable z = x + iy and write the planar system for $\alpha = 0$ as one complex equation $\dot{z} = i\omega z + g(z, \bar{z})$.
- 2. Compute the Taylor coefficients g_{20}, g_{11}, g_{21} , and evaluate the first Lyapunov coefficient l_1 .
- 3. Predict stability of the bifurcating cycle and the direction of its bifurcation.

Ex.3 Saddle homoclinic bifurcation

$$\begin{cases} \dot{x} = -x + 2y + x^2 \\ \dot{y} = (2 - \alpha)x - y - 3x^2 + \frac{3}{2}xy \end{cases}$$
(3)

- 1. Prove that at $\alpha = 0$ the system has an orbit homoclinic to a saddle. *Hint*: The curve $x^2(1-x) y^2 = 0$ is invariant, i.e. consists of orbits.
- 2. Predict stability of the bifurcating cycle and the direction of its bifurcation.

Ex.4 Cyclic fold bifurcation

$$\begin{cases} \dot{x} = (\alpha - \frac{1}{4})x - y + x(x^2 + y^2) - x(x^2 + y^2)^2 \\ \dot{y} = x + (\alpha - \frac{1}{4})y + y(x^2 + y^2) - y(x^2 + y^2)^2 \end{cases}$$
(4)

- 1. Introduce polar coordinates $x = r \cos \varphi$, $y = r \sin \varphi$.
- 2. Analyze the number and stability of equilibria of the *r*-equation for varying α . Plot the equilibria (vertically) versus α (horizontally).
- 3. Show that $\alpha = 0$ a fold bifurcation of cycles occurs in the full planar system.

Ex.5 Saddle heteroclinic bifurcation

$$\begin{cases} \dot{x} = 1 - x^2 - \alpha xy \\ \dot{y} = xy + \alpha (1 - x^2) \end{cases}$$
(5)

Prove that for $\alpha = 0$ there exists a heteroclinic connection between two saddles:

- 1. Determine the equilibria and classify them.
- 2. Compute the heteroclinic solution explicitly and verify the limits $t \to \pm \infty$.