Applied Bifurcation Theory: Practicum 1, 15 July 2019

For each planar system below, construct its phase portrait for $\alpha=0$ and for small $\alpha<0$ and $\alpha>0$ using the MATLAB tool pplane9. Identify the occurring bifurcation and try to support your conclusions by analytical arguments as outlined below.

Ex. 1 Saddle-node homoclinic bifurcation

$$
\left\{\begin{array}{l}
\dot{x}=x\left(1-x^{2}-y^{2}\right)-y(1+\alpha+x) \tag{1}\\
\dot{y}=x(1+\alpha+x)+y\left(1-x^{2}-y^{2}\right)
\end{array}\right.
$$

1. Rewrite the system in the polar coordinates (r, φ) by substituting $x=r \cos \varphi, y=r \sin \varphi$.
2. Prove that the unit circle $r=1$ is invariant and study equilibria on this circle.
3. Compute the normal form coefficient a for the saddle-node (fold) bifurcation at $\alpha=0$.

Ex. 2 Andronov-Hopf bifurcation

$$
\begin{equation*}
\ddot{x}+\dot{x}^{3}-2 \alpha \dot{x}+x=0 \tag{2}
\end{equation*}
$$

Rewrite this equation as a planar system by introducing $y=-\dot{x}$.

1. Consider the complex variable $z=x+i y$ and write the planar system for $\alpha=0$ as one complex equation $\dot{z}=i \omega z+g(z, \bar{z})$.
2. Compute the Taylor coefficients g_{20}, g_{11}, g_{21}, and evaluate the first Lyapunov coefficient l_{1}.
3. Predict stability of the bifurcating cycle and the direction of its bifurcation.

Ex. 3 Saddle homoclinic bifurcation

$$
\left\{\begin{array}{l}
\dot{x}=-x+2 y+x^{2} \tag{3}\\
\dot{y}=(2-\alpha) x-y-3 x^{2}+\frac{3}{2} x y
\end{array}\right.
$$

1. Prove that at $\alpha=0$ the system has an orbit homoclinic to a saddle. Hint: The curve $x^{2}(1-x)-$ $y^{2}=0$ is invariant, i.e. consists of orbits.
2. Predict stability of the bifurcating cycle and the direction of its bifurcation.

Ex. 4 Cyclic fold bifurcation

$$
\left\{\begin{array}{l}
\dot{x}=\left(\alpha-\frac{1}{4}\right) x-y+x\left(x^{2}+y^{2}\right)-x\left(x^{2}+y^{2}\right)^{2} \tag{4}\\
\dot{y}=x+\left(\alpha-\frac{1}{4}\right) y+y\left(x^{2}+y^{2}\right)-y\left(x^{2}+y^{2}\right)^{2}
\end{array}\right.
$$

1. Introduce polar coordinates $x=r \cos \varphi, y=r \sin \varphi$.
2. Analyze the number and stability of equilibria of the r-equation for varying α. Plot the equilibria (vertically) versus α (horizontally).
3. Show that $\alpha=0$ a fold bifurcation of cycles occurs in the full planar system.

Ex. 5 Saddle heteroclinic bifurcation

$$
\left\{\begin{array}{l}
\dot{x}=1-x^{2}-\alpha x y \tag{5}\\
\dot{y}=x y+\alpha\left(1-x^{2}\right)
\end{array}\right.
$$

Prove that for $\alpha=0$ there exists a heteroclinic connection between two saddles:

1. Determine the equilibria and classify them.
2. Compute the heteroclinic solution explicitly and verify the limits $t \rightarrow \pm \infty$.
