Convergence of Solutions of Bistable Nonlinear Diffusion Equations to Travelling Front Solutions

Dirk van Kekem

May 23, 2012
1 Motivation

2 Travelling Fronts

3 Uniform Convergence to a Front

4 Diverging Fronts

5 Conclusions
1. Motivation

2. Travelling Fronts

3. Uniform Convergence to a Front

4. Diverging Fronts

5. Conclusions
Asymptotic behavior as $t \to \infty$ of solutions $u(x, t)$ of the *bistable* nonlinear diffusion equation

$$u_t - u_{xx} - f(u) = 0, \quad x \in \mathbb{R}, \ t \in \mathbb{R}_+, \quad u(x, 0) = \varphi(x)$$

where

$$f(0) = f(1) = 0, \quad f'(0) < 0, \ f'(1) < 0.$$

Moreover, $f \in C^1$ and has only one zero for $u = \alpha \in (0, 1)$.

![Graph of a function with a peak and zeros at 0 and 1, with a zero labeled as α.]
Motivation

Simple Examples

Example

1. Fisher’s equation: \(f(u) = u(1 - u) \)
 to describe the spreading of biological populations. (not \(f'(0) < 0 \))

2. Newell-Whitehead-Segel equation: \(f(u) = u(1 - u^2) \)

3. Zeldovich equation: \(f(u) = u(1 - u)(u - \alpha) \) and \(0 < \alpha < 1 \)
Simple Examples

Example

1. Fisher’s equation: \(f(u) = u(1 - u) \)
2. Newell-Whitehead-Segel equation: \(f(u) = u(1 - u^2) \) to describe Rayleigh-Benard convection. (not \(f'(0) < 0 \))
3. Zeldovich equation: \(f(u) = u(1 - u)(u - \alpha) \) and \(0 < \alpha < 1 \)
Simple Examples

Example

1. Fisher’s equation: \(f(u) = u(1 - u) \)
2. Newell-Whitehead-Segel equation: \(f(u) = u(1 - u^2) \)
3. Zeldovich equation: \(f(u) = u(1 - u)(u - \alpha) \) and \(0 < \alpha < 1 \) that arises in combustion theory.
Result (Uniqueness of Solution)

If \(\varphi \) piecewise continuous and \(0 \leq \varphi(x) \leq 1 \), then there exists one and only one bounded classical solution \(u(x, t) \) of

\[
\begin{align*}
 u_t - u_{xx} - f(u) &= 0, \quad x \in \mathbb{R}, t \in \mathbb{R}_+, \\
 u(x, 0) &= \varphi(x),
\end{align*}
\]

(3)

with \(0 \leq u(x, t) \leq 1 \) for all \(x, t \).
If φ piecewise continuous and $0 \leq \varphi(x) \leq 1$, then there exists one and only one bounded classical solution $u(x, t)$ of

$$u_t - u_{xx} - f(u) = 0, \quad x \in \mathbb{R}, t \in \mathbb{R}_+,$$

$$u(x, 0) = \varphi(x),$$

with $0 \leq u(x, t) \leq 1$ for all x, t.

Fix these conditions on φ, f, so that we are concerned only with this unique bounded solution.
Motivation

Travelling Fronts

Uniform Convergence to a Front

Diverging Fronts

Conclusions
Definition (Travelling Front)

A *travelling front* is a solution U of

$$u_t - u_{xx} - f(u) = 0, \quad x \in \mathbb{R}, t \in \mathbb{R}_+,$$

$$u(x, 0) = \varphi(x) \tag{4}$$

of the form

$$u(x, t) = U(x - ct) = U(\xi), \tag{5}$$

with $U(-\infty) = 0, U(\infty) = 1$.

c is speed with opposite sign as $\int_0^1 f(u)du$.
A *traveling front* is a solution U of

\[u_t - u_{xx} - f(u) = 0, \quad x \in \mathbb{R}, \ t \in \mathbb{R}_+, \]

\[u(x, 0) = \varphi(x) \] \hspace{1cm} (4)

of the form

\[u(x, t) = U(x - ct) = U(\xi), \] \hspace{1cm} (5)

with $U(-\infty) = 0, U(\infty) = 1$.

c is *speed* with opposite sign as $\int_0^1 f(u) \, du$.

Limits of U when $x \to \infty$ should exist and be unequal.
Connects the homogeneous states.
These solutions move with constant speed without changing their shape.
Let \(U \) be a travelling front. Then \(P := \frac{dU}{d\xi} \) satisfies

\[
P' + \frac{f}{P} = -c
\]

\[
P(0) = P(1) = 0,
\]

(6)
Let U be a travelling front. Then $P := \frac{dU}{d\xi}$ satisfies

$$P' + \frac{f}{P} = -c$$

$$P(0) = P(1) = 0,$$

(6)

Lemma

Let α be small, and let $P_1(U), P_2(U)$ be solutions of (6) with corresponding speed c_1, c_2. Assume $P_1(U), P_2(U) > 0$ for $U \in (0, U_0]$ we have

$$P_1(U) \leq P_2(U) \quad \text{if } c_1 \leq c_2.$$

(7)

Moreover, with our conditions on f, there exists at most one solution which is positive in $(0, 1)$.
Uniqueness

Theorem

Suppose for $\alpha \in (0, 1)$ that one of the following holds:

(a) $f \leq 0$ in $(0, \alpha)$, $f > 0$ in $(\alpha, 1)$, $\int_{0}^{1} f(u) du > 0$;
(b) $f < 0$ in $(0, \alpha)$, $f \geq 0$ in $(\alpha, 1)$, $\int_{0}^{1} f(u) du < 0$;
(c) $f < 0$ in $(0, \alpha)$, $f > 0$ in $(\alpha, 1)$.

Then there is a unique solution of (6) which is positive in $(0, 1)$.
Theorem

Suppose for $\alpha \in (0, 1)$ that one of the following holds:

(a) $f \leq 0$ in $(0, \alpha)$, $f > 0$ in $(\alpha, 1)$, $\int_0^1 f(u)du > 0$;
(b) $f < 0$ in $(0, \alpha)$, $f \geq 0$ in $(\alpha, 1)$, $\int_0^1 f(u)du < 0$;
(c) $f < 0$ in $(0, \alpha)$, $f > 0$ in $(\alpha, 1)$.

Then there is a unique solution of (6) which is positive in $(0, 1)$.

Note: we can reconstruct U from a solution P by integrating:
$U'(\xi) = P(U)$, $U(0) = \frac{1}{2}$.

Can have different types of convergence. Will concentrate only on two possibilities:
1. Convergence to travelling wave front with only one zero-point
2. Starting with a function which has sufficiently large part above α.

This yields two diverging travelling fronts.

Dirk van Kekem
Convergence to Travelling Front Solutions
May 23, 2012
Uniqueness

Theorem

Suppose for $\alpha \in (0, 1)$ that one of the following holds:

(a) $f \leq 0$ in $(0, \alpha)$, $f > 0$ in $(\alpha, 1)$, $\int_0^1 f(u)du > 0$;
(b) $f < 0$ in $(0, \alpha)$, $f \geq 0$ in $(\alpha, 1)$, $\int_0^1 f(u)du < 0$;
(c) $f < 0$ in $(0, \alpha)$, $f > 0$ in $(\alpha, 1)$.

Then there is a unique solution of (6) which is positive in $(0, 1)$.

Note: we can reconstruct U from a solution P by integrating:
$U'(\xi) = P(U)$, $U(0) = \frac{1}{2}$.

Can have different types of convergence. Will concentrate only on two possibilities:

1. Convergence to travelling wave front with only one zero-point α
2. Starting with a function which has sufficiently large part above α. This yields two diverging travelling fronts.
1 Motivation

2 Travelling Fronts

3 Uniform Convergence to a Front

4 Diverging Fronts

5 Conclusions
Uniform Convergence

Theorem

Let, as before, $f(u) < 0$ for $0 < u < \alpha$; $f(u) > 0$ for $\alpha < u < 1$. Let U be a travelling front solution with speed c and suppose

$$\limsup_{x \to -\infty} \varphi(x) < \alpha, \quad \liminf_{x \to \infty} \varphi(x) > \alpha,$$

then solution $u(x, t)$ of (1) satisfies

$$|u(x, t) - U(x - ct - \xi_0)| < Ke^{-\omega t},$$

for some constants $K, \omega > 0$ and ξ_0.
Lemma

There exists constants ξ_1, ξ_2 and $q_0, \mu \geq 0$ such that

$$U(\xi - \xi_1) - q_0 e^{-\mu t} \leq v(\xi, t) \leq U(\xi - \xi_2) + q_0 e^{-\mu t}.$$ \hfill (10)
Proof.

Define \(v(\xi, t) = u(x, t), \xi = x - ct; \) satisfies:

\[
\begin{align*}
 v_t - v_{\xi\xi} - cv_\xi - f(v) &= 0, \\
 v(\xi, 0) &= \varphi(\xi).
\end{align*}
\]

(11)
Proof.

Define $v(\xi, t) = u(x, t), \xi = x - ct$; satisfies:

$$v_t - v_{\xi\xi} - cv_{\xi} - f(v) = 0, \quad \xi \in \mathbb{R}, \ t \in \mathbb{R}_+, \quad v(\xi, 0) = \varphi(\xi).$$ \hspace{1cm} (11)

Construct subsolution $\underline{v}(\xi, t) := \max(0, U(\xi - z(t)) - q(t))$, for suitably chosen $q(t) \geq 0$ and $z(t)$.

Proof.

Define $v(\xi, t) = u(x, t), \xi = x - ct$; satisfies:

$$\begin{align*}
v_t - v_{\xi\xi} - cv_{\xi} - f(v) &= 0, \\
\xi &\in \mathbb{R}, t \in \mathbb{R}^+, \\
v(\xi, 0) &= \varphi(\xi).
\end{align*}$$

(11)

Construct subsolution $\bar{v}(\xi, t) := \max(0, U(\xi - z(t)) - q(t))$, for suitably chosen $q(t) \geq 0$ and $z(t)$.

If $\bar{v} > 0$ then for $q(t) = q_0 e^{-\mu t}$ and with a clever choice of $z(t), \xi_1, \xi_2$ this results in

$$\begin{align*}
\bar{v}_t - \bar{v}_{\xi\xi} - c\bar{v}_{\xi} - f(\bar{v}) &\leq 0.
\end{align*}$$

(12)
Proof.

Define \(v(\xi, t) = u(x, t), \xi = x - ct \); satisfies:

\[
v_t - v_{\xi\xi} - cv_\xi - f(v) = 0, \quad \xi \in \mathbb{R}, \ t \in \mathbb{R}_+, \]

\(v(\xi, 0) = \varphi(\xi). \) \hfill (11)

Construct subsolution \(\underline{v}(\xi, t) := \max(0, U(\xi - z(t)) - q(t)) \), for suitably chosen \(q(t) \geq 0 \) and \(z(t) \).

If \(\underline{v} > 0 \) then for \(q(t) = q_0 e^{-\mu t} \) and with a clever choice of \(z(t), \xi_1, \xi_2 \) this results in

\[
\underline{v}_t - \underline{v}_{\xi\xi} - c\underline{v}_\xi - f(\underline{v}) \leq 0.
\]

Hence,

\[
U(\xi - \xi_1) - q_0 e^{-\mu t} = U(\xi - \xi_1) - q(t) \leq \underline{v}(\xi, t) \leq v(\xi, t). \hfill (12)
\]
Can take \(q_0 = O(\varepsilon) \) such that \(|v(\xi, t) - U(\xi - \xi_0)| < \omega(\varepsilon) \), for a constant \(\xi_0 \) and a function \(\omega \).
Can take $q_0 = O(\varepsilon)$ such that $|v(\xi, t) - U(\xi - \xi_0)| < \omega(\varepsilon)$, for a constant ξ_0 and a function ω.

Moreover, we can estimate for $\pm z < 0$:

$$|1 \pm v(\xi, t)|, \quad |v_\xi(\xi, t)|, \quad |v_{\xi\xi}(\xi, t)|, \quad |v_t(\xi, t)| < C \left(e^{-\frac{c}{2} \pm \sigma} z + e^{-\mu t} \right),$$

(13)

for positive constants $\sigma > \frac{|c|}{2}$, C, μ.
Lemma

There exists a value ξ_0 such that

$$\lim_{t \to \infty} |v(\xi, t) - U(\xi - \xi_0)| = 0. \quad (14)$$
Lemma

There exists a value ξ_0 such that

$$\lim_{t \to \infty} |v(\xi, t) - U(\xi - \xi_0)| = 0.$$ \hfill (14)

Proof.

Let $\varepsilon > 0$ satisfy $|c|\varepsilon < 2\mu$. Define truncated function w by

$$w(\xi, t) = \begin{cases}
0 & \text{for } z \leq -\varepsilon t - 1, \\
v(\xi, t) & \text{for } |z| \leq \varepsilon t, \\
1 & \text{for } z \geq \varepsilon t + 1,
\end{cases}$$

with a smooth connection between the different parts.
Lemma

There exists a value ξ_0 such that

$$\lim_{t \to \infty} |v(\xi, t) - U(\xi - \xi_0)| = 0.$$ \hspace{1cm} (14)

Proof.

Let $\varepsilon > 0$ satisfy $|c|\varepsilon < 2\mu$. Define truncated function w by

$$w(\xi, t) = \begin{cases}
0 & \text{for } z \leq -\varepsilon t - 1, \\
v(\xi, t) & \text{for } |z| \leq \varepsilon t, \\
1 & \text{for } z \geq \varepsilon t + 1,
\end{cases}$$ \hspace{1cm} (15)

with a smooth connection between the different parts.

Then w can be used to find a limit function $\tilde{v}(\xi) = \lim_n w(\cdot, t'_n)$, which satisfies $\tilde{v}_{\xi\xi} + c\tilde{v}_\xi + f(\tilde{v}) = 0$.

Dirk van Kekem
Lemma

There exists a value ξ_0 such that

$$\lim_{t \to \infty} |v(\xi, t) - U(\xi - \xi_0)| = 0.$$ \hspace{1cm} (14)

Proof.

Let $\varepsilon > 0$ satisfy $|c|\varepsilon < 2\mu$. Define truncated function w by

$$w(\xi, t) = \begin{cases}
0 & \text{for } z \leq -\varepsilon t - 1, \\
v(\xi, t) & \text{for } |z| \leq \varepsilon t, \\
1 & \text{for } z \geq \varepsilon t + 1,
\end{cases}$$ \hspace{1cm} (15)

with a smooth connection between the different parts.

Then w can be used to find a limit function $\tilde{v}(\xi) = \lim_n w(\cdot, t'_n)$, which satisfies $\tilde{v}_{\xi\xi} + c\tilde{v}_\xi + f(\tilde{v}) = 0$.

Moreover, $\tilde{v}(-\infty) = 0$, $\tilde{v}(\infty) = 1$, so by uniqueness of travelling fronts, $\tilde{v}(\xi) = U(\xi - \xi_0)$ for some ξ_0.

\square
Define

\[h(\xi, t) := w(\xi, t) - U(\xi - \xi_0 - \alpha(t)), \]

where \(\alpha(t) \) is chosen so that \(h \) is orthogonal to \(e^{c\xi} \) for large \(t \). Existence of \(\alpha \) follows from the \textit{Implicit Function Theorem}.

The estimates \(|h(\xi, t)|, |\alpha(t)| < Ce^{-\nu t}, \nu > 0 \) imply that \(w \) converges exponentially to \(U(\xi - \xi_0) \).

From (13) and the definition of \(w \) it follows that

\[|v(\xi, t) - w(\xi, t)| < Ce^{-\tilde{\nu} t}. \]

Hence, \(v(\xi, t) \) converges exponentially to \(U(\xi - \xi_0) \).
Define
\[h(\xi, t) := w(\xi, t) - U(\xi - \xi_0 - \alpha(t)), \]
where \(\alpha(t) \) is chosen so that \(h \) is orthogonal to \(e^{c\xi} \) for large \(t \). Existence of \(\alpha \) follows from the *Implicit Function Theorem*. The estimates
\[|h(\xi, t)|, \quad |\alpha(t)| < Ce^{-\nu t}, \quad \nu > 0 \]
imply that \(w \) converges exponentially to \(U(\xi - \xi_0) \).
Define
\[h(\xi, t) := w(\xi, t) - U(\xi - \xi_0 - \alpha(t)), \]
where \(\alpha(t) \) is chosen so that \(h \) is orthogonal to \(e^{c\xi} \) for large \(t \). Existence of \(\alpha \) follows from the *Implicit Function Theorem*. The estimates
\[|h(\xi, t)|, \quad |\alpha(t)| < Ce^{-\nu t}, \quad \nu > 0 \]
imply that \(w \) converges exponentially to \(U(\xi - \xi_0) \).

From (13) and the definition of \(w \) it follows that
\[|v(\xi, t) - w(\xi, t)| < Ce^{-\tilde{\nu} t}. \]

Hence, \(v(\xi, t) \) converges exponentially to \(U(\xi - \xi_0) \).
Progression

1. Motivation
2. Travelling Fronts
3. Uniform Convergence to a Front
4. Diverging Fronts
5. Conclusions
Simple Example

If $0 \leq \varphi(x) < \alpha$ for all x, then

$$\lim_{t \to \infty} u(x, t) = 0.$$ \hspace{1cm} (16)
Simple Example

If \(0 \leq \varphi(x) < \alpha \) for all \(x \), then

\[
\lim_{t \to \infty} u(x, t) = 0. \tag{16}
\]

Let \(\varphi(x) \leq \alpha - \delta < \alpha \), then \(u \) is bounded by the supersolution \(\overline{u}(t) \) defined by

\[
\begin{cases}
\overline{u}(t) = f'(\overline{u}), \\
\overline{u}(0) = \alpha - \delta,
\end{cases} \tag{17}
\]

and the subsolution \(\underline{u}(t) \) of the same equation, with \(\underline{u}(0) = \inf \varphi(x) \).

Obviously, \(u, \overline{u} \to 0 \) as \(t \to \infty \).
Simple Example

If $0 \leq \varphi(x) < \alpha$ for all x, then

$$\lim_{t \to \infty} u(x, t) = 0.$$ \hfill (16)

Let $\varphi(x) \leq \alpha - \delta < \alpha$, then u is bounded by the supersolution $\overline{u}(t)$ defined by

$$\begin{cases}
\overline{u}(t) = f'(\overline{u}), \\
\overline{u}(0) = \alpha - \delta,
\end{cases}$$ \hfill (17)

and the subsolution $\underline{u}(t)$ of the same equation, with $\underline{u}(0) = \inf \varphi(x)$. Obviously, $u, \overline{u} \to 0$ as $t \to \infty$.

Similarly, if $\alpha < \varphi(x) \leq 1$ for all x, then

$$\lim_{t \to \infty} u(x, t) = 1.$$ \hfill (18)
Theorem

Let f as before, with $\int_0^1 f(u)du > 0$. Let φ satisfy

$$\limsup_{|x| \to \infty} \varphi(x) < \alpha \quad \varphi(x) > \alpha + \eta \text{ for } |x| < L,$$

where $\eta, L > 0$.

If $L(\eta, f)$ large enough, then solution $u(x, t)$ of (1) satisfies

$$|u(x, t) - U(x - ct - \xi_0)| < Ke^{-\omega t}, \quad x < 0,$$
$$|u(x, t) - U(-x - ct - \xi_1)| < Ke^{-\omega t}, \quad x > 0,$$

for some constants $K, \omega > 0$ and ξ_0, ξ_1.

Situation

Diverging Fronts

Convergence to Travelling Front Solutions
Situation

\[\varphi(x) \]

\[1 \]

\[0 \]

\[x \]

\[\eta \]

\[\alpha + \eta \]

\[\alpha \]
Proof of the Theorem

Lemma

There exist constants $q_0, \mu > 0$ and ξ_1, ξ_2, such that

\[
U(x - ct - \xi_1) + U(-x - ct - \xi_1) - 1 - q_0 e^{-\mu t} \leq u(x, t) \\
\leq U(x - ct - \xi_2) + U(-x - ct - \xi_2) - 1 + q_0 e^{-\mu t}.
\] (21)
Proof of the Theorem

Lemma

There exist constants $q_0, \mu > 0$ and ξ_1, ξ_2, such that

$$U(x - ct - \xi_1) + U(-x - ct - \xi_1) - 1 - q_0 e^{-\mu t} \leq u(x, t) \leq U(x - ct - \xi_2) + U(-x - ct - \xi_2) - 1 + q_0 e^{-\mu t}. \quad (21)$$

lemma

There exist functions $\omega(\varepsilon), T(\varepsilon)$, defined for small $\varepsilon > 0$ and with $\lim_{\varepsilon \downarrow 0} \omega(\varepsilon) = 0$, such that if

$$|u(x, t_0) - U(x - ct_0 - x_0)| < \varepsilon, \quad (22)$$

for some $t_0 > T(\varepsilon)$, some x_0 and all $x < 0$, then

$$|u(x, t) - U(x - ct - x_0)| < \omega(\varepsilon), \quad (23)$$

for all $t > t_0, x < 0$.

Define the *left truncated function* by

\[
u_l(x, t) = \begin{cases}
u(x, t) & x < 0, \\ 1 - \zeta(x)(1 - \nu(x, t)) & x \geq 0, \end{cases}
\]

(24)

with \(\zeta(x) \in C^\infty(\mathbb{R}), \zeta(x) \equiv 1 \) for \(x \leq 0 \) and \(\zeta(x) \equiv 0 \) for \(x \geq 1 \).
Define the *left truncated function* by

\[u_l(x, t) = \begin{cases}
 u(x, t) & x < 0, \\
 1 - \zeta(x)(1 - u(x, t)) & x \geq 0,
\end{cases} \quad (24) \]

with \(\zeta(x) \in C^\infty(\mathbb{R}) \), \(\zeta(x) \equiv 1 \) for \(x \leq 0 \) and \(\zeta(x) \equiv 0 \) for \(x \geq 1 \).

Moreover, \(v_l(\xi, t) = u_l(x, t) = u_l(\xi + ct, t) \).
Define the *left truncated function* by

\[
 u_l(x, t) = \begin{cases}
 u(x, t) & x < 0, \\
 1 - \zeta(x)(1 - u(x, t)) & x \geq 0,
 \end{cases}
\]

(24)

with \(\zeta(x) \in C^\infty(\mathbb{R}) \), \(\zeta(x) \equiv 1 \) for \(x \leq 0 \) and \(\zeta(x) \equiv 0 \) for \(x \geq 1 \). Moreover, \(v_l(\xi, t) = u_l(x, t) = u_l(\xi + ct, t) \).

The rest of the proof follows by slightly modifying the proofs of the lemma’s in the uniform convergence case.
Progression

1. Motivation
2. Travelling Fronts
3. Uniform Convergence to a Front
4. Diverging Fronts
5. Conclusions
We have the following:
Consider \(f \) with only three zeroes, at \(x = 0, \alpha, 1, \)
We have the following:
Consider \(f \) with only three zeroes, at \(x = 0, \alpha, 1, \)

1. If \(\varphi(x) < \alpha \) or \(\varphi(x) > \alpha \) for all \(x \), then \(u(x, t) \) converges to 0 or 1, resp.
We have the following:

Consider f with only three zeroes, at $x = 0, \alpha, 1$,

1. If $\varphi(x) < \alpha$ or $\varphi(x) > \alpha$ for all x, then $u(x, t)$ converges to 0 or 1, resp.

2. If $\varphi(x)$ is below α for $x \to -\infty$ and above α for $x \to \infty$, then the solution $u(x, t)$ converges uniformly to a travelling front solution $U(x - ct)$.
We have the following:
Consider \(f \) with only three zeroes, at \(x = 0, \alpha, 1, \)

1. If \(\varphi(x) < \alpha \) or \(\varphi(x) > \alpha \) for all \(x \), then \(u(x, t) \) converges to 0 or 1, resp.

2. If \(\varphi(x) \) is below \(\alpha \) for \(x \to -\infty \) and above \(\alpha \) for \(x \to \infty \), then the solution \(u(x, t) \) converges uniformly to a travelling front solution \(U(x - ct) \).

3. If \(\varphi(x) \) is bigger than \(\alpha \) on a bounded interval \(|x| < L \), then \(u(x, t) \) converges to a pair of fronts, moving in opposite directions.
We have the following:
Consider f with only three zeroes, at $x = 0, \alpha, 1$,

1. If $\varphi(x) < \alpha$ or $\varphi(x) > \alpha$ for all x, then $u(x, t)$ converges to 0 or 1, resp.

2. If $\varphi(x)$ is below α for $x \to -\infty$ and above α for $x \to \infty$, then the solution $u(x, t)$ converges uniformly to a travelling front solution $U(x - ct)$.

3. If $\varphi(x)$ is bigger than α on a bounded interval $|x| < L$, then $u(x, t)$ converges to a pair of fronts, moving in opposite directions.

From the last statement, we see that $u(x, t)$ takes in the end on a large, but finite, interval the value 0 or 1.
Other possibilities under slightly different conditions:

- **Fife, Paul C. and McLeod, J.B.**

- **Fife, Paul C.**

- **Fife, Paul C. and McLeod, J.B.**
Other possibilities under slightly different conditions:

Fife, Paul C. and McLeod, J.B.

Fife, Paul C.

Fife, Paul C. and McLeod, J.B.

Thank you for your attention!