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1. Initial-value problems for DDEs with constant delays

Consider a DDE for x(t) ∈ Rn:

ẋ(t) = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τm)),

where f : R(m+1)n → Rn is smooth, and

0 =: τ0 < τ1 < τ2 < · · · < τm =: h <∞,
with initial data φ ∈ C([−h,0],Rn).

• Global solution: x ∈ C([−h,∞),Rn) ∩ C1([0,∞),Rn).

• History for t ≥ 0: xt ∈ C([−h,0],Rn), xt(θ) := x(t+θ), θ ∈ [−h,0].
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• Initial-value problem for DDE:{
ẋ(t) = F (xt), t ≥ 0,
x0 = φ,

where F : C([−h,0],Rn)→ Rn is smooth and is defined by

F (φ) = f(φ(0), φ(−τ1), φ(−τ2), . . . , φ(−τm)).

• If F is globally Lipschitz, then for any φ ∈ C([−h,0],Rn) there exists

a unique global solution x = x(·, φ) for the above IVP that depends

continuously on φ on any interval [0, T ]. If F is only locally Lipschitz,

the solution is only guaranteed to exist on a small interval.

• The IVP defines a (local) semigroup S(t) on X = C([−h,0],Rn)

[S(t)(φ)](θ) := xt(θ), θ ∈ [−h,0], t ≥ 0,

which is strongly continuous, i.e.

lim
t↓0
‖S(t)φ− φ‖ = 0, φ ∈ X.



2. Numerical solution of IVPs

• Simplest approach: Use an explicit ODE solver with interpolation

of the history xt known only at mesh points.

• MATLAB dde23 function: Runge-Kutta BS(2,3) with cubic Her-

mite interpolation xH between consequtive mesh points. Let hk < τ1

be the current stepsize. For i = 1,2,3:

tki = tk + cihk,

fki = f(xki, xH(tki − τ1), xH(tki − τ2), . . . , xH(tki − τm)),

where xki = xk + hk

i−1∑
j=1

aijfkj.

Then tk+1 = tk + hk and

xk+1 = xk + hk

3∑
i=1

bifki +O(h4
k), x̃k+1 = xk + hk

3∑
i=1

b̃ifki +O(h3
k).

• Use ‖xk+1 − x̃k+1‖ to adapt the stepsize hk.



3. Equilibria of DDEs and their stability

• Equilibrium (constant) solution x(t) = x∗ ∈ Rn:

f(x∗, x∗, x∗, . . . , x∗) = 0.

• Linearized DDE:

ẏ(t) = A0y(t)+
m∑
j=1

Ajy(t−τj), Aj = Djf(x∗, x∗, x∗, . . . , x∗), j = 0,1, . . . ,m.

• Characteristic matrix:

∆(λ) := λIn −A0 −
m∑
j=1

Aje
−λτj , λ ∈ C.

• The characteristic equation

det ∆(λ) = 0

has an infinite number of roots. The equilibrium x∗ is asymptoti-

cally stable if all characteristic roots satisfy <(λ) < 0.



• Let T (t) be the strongly continuous semigroup corresponding to the
linearized DDE. It holds: T (t) = Dφ(S(t)(φ))

∣∣∣
φ=x∗

.

The infinitesimal generator of T (t)

Aφ := lim
t↓0

1

t
(T (t)φ− φ)

is given by (Aφ)(θ) = φ̇(θ) for φ ∈ D(A) where

D(A) = {φ ∈ X : φ̇ ∈ X and φ̇(0) =
m∑
j=0

Ajφ(−τj)}.

If λ is a characteristic root, then λ belongs to the spectrum σ(A)
of A and µ = eλδ ∈ σ(T (δ)). Thus, eigenvalues of a discretization of
T (δ) can be used to approximate characteristic roots.

• If an approximation to an eigenvalue λ is known, it can be accurately
computed by Newton iterations applied to the system{

∆(λ)v = 0,
〈v, v0〉 = 1,

where (λ, v) ∈ Cn+1 are unknown and v0 ∈ Cn is fixed.



4. Computation of equilibria

Consider now a DDE depending on parameter α ∈ R:

ẋ(t) = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τm), α),

where f : Rn(m+1) × R→ Rn is smooth.

• An equilibrium manifold M is defined by

G(u, α) := f(u, u, u, . . . , u, α) = 0, G : Rn+1 → Rn.

• Near any regular point p0 = (u0, α0), the system G(u, α) = 0 defines
a unique smooth curve that passes through p0 and can be found
by numerical continuation. DDE-BIFTOOL employs a secant
prediction followed by Newton corrections in the orthogonal plane.
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5. Cycles of DDEs and their stability

Consider first a DDE without parameters:

ẋ(t) = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τm)),

where f : R(m+1)n → Rn is smooth.

• x(t0 + T ) = x(t0) for some t0 ≥ 0 does not imply periodicity of the
whole solution, i.e. x(t+ T ) = x(t) for all t ≥ 0!

• Periodicity condition: S(T )(φ) = φ or xT = x0

x

0−h TT − h

x0 = φ xT = S(T )(φ)

• Phase condition: Ψ[x, T ] = 0, e.g. an integral phase condition.



Stability of cycles:

• Monodromy operator: Y := Dφ(S(T )(φ))
∣∣∣
φ=x∗

where x∗ = x∗(t)

is the periodic solution. If all eigenvalues of Y (multipliers) are
located strictly inside the unit circle, the cycle is asymptotically
stable.

• The linearized about x∗(t) DDE:

ẏ(t) = A0(t)y(t) +
m∑
j=1

Aj(t)y(t− τj),

where

Aj(t) = Djf(x∗(t), x∗(t− τ1), . . . , x∗(t− τm)), j = 0,1, . . . ,m.

• Let U(t, s) : X → X be the solution operator for the linearized
DDE, i.e. yt = U(t, s)ys. Then

Y = U(T,0).

• In DDE-BIFTOOL, a matrix approximation to Y is computed via
orthogonal collocation.



6. Computation of cycles

• Stable periodic solutions can be found by integration.

• Periodic BVP:
ẋ(t)− f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τm)) = 0, t ∈ [0, T ]

xT − x0 = 0,
Ψ[x, T ] = 0.

• Rescaled periodic BVP:
u̇(s)− Tf

(
u(s), u

(
s−

τ1

T

)
, u

(
s−

τ2

T

)
, . . . , u

(
s−

τm

T

))
= 0, s ∈ [0,1]

u(θ + 1)− u(θ) = 0, θ ∈
[
−hT ,0

]
ψ[u] = 0,

where for some reference 1-periodic function u(0)

ψ[u] =
∫ 1

0
u̇(0)(s)(u(0)(s)− u(s)) ds.



Discretization:

• Mesh points 0 = s0 < s1 < · · · < sL = 1

• Basis points si,j = si+
j
M (si+1−si), i = 0,1, . . . , L−1, j = 1, . . . ,M−1

• Continuous approximation

u(s) =
M∑
j=0

ui,jPi,j(s), s ∈ [si, si+1],

where Pi,j(s) are the Lagrange basis polynomials

Pi,j(s) =
M∏

k=0,k 6=j

s− si,k
si,j − si,k

, j = 0,1, . . . ,M − 1.

• Unknowns
(
{ui,j}i=0,1,...,L−1

j=0,...,M−1 , u
L,0, T

)
∈ Rn(LM+1)+1



Orthogonal collocation:

• Collocation points:

ci,j = τi + cj(si+1 − si), i = 0,1, . . . , L− 1, j = 1, . . . ,M,

where cj are the roots of the M-th degree Gauss-Legendre poly-

nomial transformed to [0,1].

• Defining system (with n(LM + 1) + 1 scalar equations)
u̇(ci,j)− Tf

(
u(ci,j), u

((
ci,j −

τ1

T

)
mod 1

)
, . . . , u

((
ci,j −

τm

T

)
mod 1

))
= 0,

u0,0 − uL,0 = 0,
ψ[u] = 0.

• Approximation error: ‖u(si,j)− ui,j‖ = O(δM) where

δ := max
i=0,1,...,L−1

|si+1 − si|

• If the DDE depends on parameter α ∈ R, the above defining system

can be used for numerical continuation of the cycle.


