Bifurcation Analysis of DDEs

Initial-value problems.
Stability and continuation of equilibria and limit cycles.

Yu.A. Kuznetsov (UU/UT, NL)

Contents

1. Initial-value problems for DDEs with constant delays.
2. Numerical solution of IVPs.
3. Equilibria of DDEs and their stability.
4. Computation of equilibria.
5. Cycles of DDEs and their stability.
6. Computation of cycles.
[1] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, and H.-O. Walther. Delay equations: Functional, complex, and nonlinear analysis. Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995.
[2] L.F. Shampine, S. Thompson. Solving DDEs in MATLAB. Appl. Numer. Math. 37 (2001), 441 -458.
[3] K. Engelborghs, T. Luzyanina, and D. Roose. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Software 28 (2002), 1-21.
[4] T. Luzyanina and K. Engelborghs. Computing Floquet multipliers for functional differential equations. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), 2977-2989.
7. Initial-value problems for DDEs with constant delays

Consider a DDE for $x(t) \in \mathbb{R}^{n}$:

$$
\dot{x}(t)=f\left(x(t), x\left(t-\tau_{1}\right), x\left(t-\tau_{2}\right), \ldots, x\left(t-\tau_{m}\right)\right)
$$

where $f: \mathbb{R}^{(m+1) n} \rightarrow \mathbb{R}^{n}$ is smooth, and

$$
0=: \tau_{0}<\tau_{1}<\tau_{2}<\cdots<\tau_{m}=: h<\infty
$$

with initial data $\phi \in C\left([-h, 0], \mathbb{R}^{n}\right)$.

- Global solution: $x \in C\left([-h, \infty), \mathbb{R}^{n}\right) \cap C^{1}\left([0, \infty), \mathbb{R}^{n}\right)$.
- History for $t \geq 0: x_{t} \in C\left([-h, 0], \mathbb{R}^{n}\right), \quad x_{t}(\theta):=x(t+\theta), \quad \theta \in[-h, 0]$.

- Initial-value problem for DDE:

$$
\left\{\begin{aligned}
\dot{x}(t) & =F\left(x_{t}\right), \quad t \geq 0 \\
x_{0} & =\phi
\end{aligned}\right.
$$

where $F: C\left([-h, 0], \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is smooth and is defined by

$$
F(\phi)=f\left(\phi(0), \phi\left(-\tau_{1}\right), \phi\left(-\tau_{2}\right), \ldots, \phi\left(-\tau_{m}\right)\right)
$$

- If F is globally Lipschitz, then for any $\phi \in C\left([-h, 0], \mathbb{R}^{n}\right)$ there exists a unique global solution $x=x(\cdot, \phi)$ for the above IVP that depends continuously on ϕ on any interval [$0, T$]. If F is only locally Lipschitz, the solution is only guaranteed to exist on a small interval.
- The IVP defines a (local) semigroup $S(t)$ on $X=C\left([-h, 0], \mathbb{R}^{n}\right)$

$$
[S(t)(\phi)](\theta):=x_{t}(\theta), \quad \theta \in[-h, 0], \quad t \geq 0
$$

which is strongly continuous, i.e.

$$
\lim _{t \downarrow 0}\|S(t) \phi-\phi\|=0, \quad \phi \in X
$$

2. Numerical solution of IVPs

- Simplest approach: Use an explicit ODE solver with interpolation of the history x_{t} known only at mesh points.
- MATLAB dde23 function: Runge-Kutta BS $(2,3)$ with cubic Hermite interpolation x_{H} between consequtive mesh points. Let $h_{k}<\tau_{1}$ be the current stepsize. For $i=1,2,3$:

$$
\begin{aligned}
t_{k i}= & t_{k}+c_{i} h_{k} \\
f_{k i}= & f\left(x_{k i}, x_{H}\left(t_{k i}-\tau_{1}\right), x_{H}\left(t_{k i}-\tau_{2}\right), \ldots, x_{H}\left(t_{k i}-\tau_{m}\right)\right) \\
& \quad \text { where } x_{k i}=x_{k}+h_{k} \sum_{j=1}^{i-1} a_{i j} f_{k j} .
\end{aligned}
$$

Then $t_{k+1}=t_{k}+h_{k}$ and

$$
x_{k+1}=x_{k}+h_{k} \sum_{i=1}^{3} b_{i} f_{k i}+O\left(h_{k}^{4}\right), \quad \tilde{x}_{k+1}=x_{k}+h_{k} \sum_{i=1}^{3} \tilde{b}_{i} f_{k i}+O\left(h_{k}^{3}\right)
$$

- Use $\left\|x_{k+1}-\tilde{x}_{k+1}\right\|$ to adapt the stepsize h_{k}.

3. Equilibria of DDEs and their stability

- Equilibrium (constant) solution $x(t)=x^{*} \in \mathbb{R}^{n}$:

$$
f\left(x^{*}, x^{*}, x^{*}, \ldots, x^{*}\right)=0
$$

- Linearized DDE:

$$
\dot{y}(t)=A_{0} y(t)+\sum_{j=1}^{m} A_{j} y\left(t-\tau_{j}\right), A_{j}=D_{j} f\left(x^{*}, x^{*}, x^{*}, \ldots, x^{*}\right), j=0,1, \ldots, m
$$

- Characteristic matrix:

$$
\Delta(\lambda):=\lambda I_{n}-A_{0}-\sum_{j=1}^{m} A_{j} e^{-\lambda \tau_{j}}, \quad \lambda \in \mathbb{C}
$$

- The characteristic equation

$$
\operatorname{det} \Delta(\lambda)=0
$$

has an infinite number of roots. The equilibrium x^{*} is asymptotically stable if all characteristic roots satisfy $\Re(\lambda)<0$.

- Let $T(t)$ be the strongly continuous semigroup corresponding to the linearized DDE. It holds: $T(t)=\left.D_{\phi}(S(t)(\phi))\right|_{\phi=x^{*}}$.
The infinitesimal generator of $T(t)$

$$
A \phi:=\lim _{t \downarrow 0} \frac{1}{t}(T(t) \phi-\phi)
$$

is given by $(A \phi)(\theta)=\dot{\phi}(\theta)$ for $\phi \in D(A)$ where

$$
D(A)=\left\{\phi \in X: \dot{\phi} \in X \quad \text { and } \quad \dot{\phi}(0)=\sum_{j=0}^{m} A_{j} \phi\left(-\tau_{j}\right)\right\}
$$

If λ is a characteristic root, then λ belongs to the spectrum $\sigma(A)$ of A and $\mu=e^{\lambda \delta} \in \sigma(T(\delta))$. Thus, eigenvalues of a discretization of $T(\delta)$ can be used to approximate characteristic roots.

- If an approximation to an eigenvalue λ is known, it can be accurately computed by Newton iterations applied to the system

$$
\left\{\begin{array}{l}
\Delta(\lambda) v=0 \\
\left\langle v, v_{0}\right\rangle=1
\end{array}\right.
$$

where $(\lambda, v) \in \mathbb{C}^{n+1}$ are unknown and $v_{0} \in \mathbb{C}^{n}$ is fixed.

4. Computation of equilibria

Consider now a DDE depending on parameter $\alpha \in \mathbb{R}$:

$$
\dot{x}(t)=f\left(x(t), x\left(t-\tau_{1}\right), x\left(t-\tau_{2}\right), \ldots, x\left(t-\tau_{m}\right), \alpha\right),
$$

where $f: \mathbb{R}^{n(m+1)} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ is smooth.

- An equilibrium manifold M is defined by

$$
G(u, \alpha):=f(u, u, u, \ldots, u, \alpha)=0, \quad G: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}
$$

- Near any regular point $p_{0}=\left(u_{0}, \alpha_{0}\right)$, the system $G(u, \alpha)=0$ defines a unique smooth curve that passes through p_{0} and can be found by numerical continuation. DDE-BIFTOOL employs a secant prediction followed by Newton corrections in the orthogonal plane.

5. Cycles of DDEs and their stability

Consider first a DDE without parameters:

$$
\dot{x}(t)=f\left(x(t), x\left(t-\tau_{1}\right), x\left(t-\tau_{2}\right), \ldots, x\left(t-\tau_{m}\right)\right),
$$

where $f: \mathbb{R}^{(m+1) n} \rightarrow \mathbb{R}^{n}$ is smooth.

- $x\left(t_{0}+T\right)=x\left(t_{0}\right)$ for some $t_{0} \geq 0$ does not imply periodicity of the whole solution, i.e. $x(t+T)=x(t)$ for all $t \geq 0$!
- Periodicity condition: $S(T)(\phi)=\phi$ or $x_{T}=x_{0}$

- Phase condition: $\Psi[x, T]=0$, e.g. an integral phase condition.

Stability of cycles:

- Monodromy operator: $Y:=\left.D_{\phi}(S(T)(\phi))\right|_{\phi=x^{*}}$ where $x^{*}=x^{*}(t)$ is the periodic solution. If all eigenvalues of Y (multipliers) are located strictly inside the unit circle, the cycle is asymptotically stable.
- The linearized about $x^{*}(t)$ DDE:

$$
\dot{y}(t)=A_{0}(t) y(t)+\sum_{j=1}^{m} A_{j}(t) y\left(t-\tau_{j}\right)
$$

where

$$
A_{j}(t)=D_{j} f\left(x^{*}(t), x^{*}\left(t-\tau_{1}\right), \ldots, x^{*}\left(t-\tau_{m}\right)\right), \quad j=0,1, \ldots, m
$$

- Let $U(t, s): X \rightarrow X$ be the solution operator for the linearized DDE, i.e. $y_{t}=U(t, s) y_{s}$. Then

$$
Y=U(T, 0)
$$

- In DDE-BIFTOOL, a matrix approximation to Y is computed via orthogonal collocation.

6. Computation of cycles

- Stable periodic solutions can be found by integration.
- Periodic BVP:

$$
\left\{\begin{aligned}
\dot{x}(t)-f\left(x(t), x\left(t-\tau_{1}\right), x\left(t-\tau_{2}\right), \ldots, x\left(t-\tau_{m}\right)\right) & =0, \quad t \in[0, T] \\
x_{T}-x_{0} & =0 \\
\Psi[x, T] & =0
\end{aligned}\right.
$$

- Rescaled periodic BVP:

$$
\left\{\begin{aligned}
\dot{u}(s)-T f\left(u(s), u\left(s-\frac{\tau_{1}}{T}\right), u\left(s-\frac{\tau_{2}}{T}\right), \ldots, u\left(s-\frac{\tau_{m}}{T}\right)\right) & =0, s \in[0,1] \\
u(\theta+1)-u(\theta) & =0, \theta \in\left[-\frac{h}{T}, 0\right] \\
\psi[u] & =0,
\end{aligned}\right.
$$

where for some reference 1 -periodic function $u^{(0)}$

$$
\psi[u]=\int_{0}^{1} \dot{u}^{(0)}(s)\left(u^{(0)}(s)-u(s)\right) d s
$$

Discretization:

- Mesh points $0=s_{0}<s_{1}<\cdots<s_{L}=1$
- Basis points $s_{i, j}=s_{i}+\frac{j}{M}\left(s_{i+1}-s_{i}\right), i=0,1, \ldots, L-1, j=1, \ldots, M-1$
- Continuous approximation

$$
u(s)=\sum_{j=0}^{M} u^{i, j} P_{i, j}(s), \quad s \in\left[s_{i}, s_{i+1}\right]
$$

where $P_{i, j}(s)$ are the Lagrange basis polynomials

$$
P_{i, j}(s)=\prod_{k=0, k \neq j}^{M} \frac{s-s_{i, k}}{s_{i, j}-s_{i, k}}, j=0,1, \ldots, M-1
$$

- Unknowns $\left(\left\{u^{i, j}\right\}_{j=0, \ldots, M-1}^{i=0,1, \ldots, L-1}, u^{L, 0}, T\right) \in \mathbb{R}^{n(L M+1)+1}$

Orthogonal collocation:

- Collocation points:

$$
c_{i, j}=\tau_{i}+c_{j}\left(s_{i+1}-s_{i}\right), \quad i=0,1, \ldots, L-1, j=1, \ldots, M
$$

where c_{j} are the roots of the M-th degree Gauss-Legendre polynomial transformed to $[0,1]$.

- Defining system (with $n(L M+1)+1$ scalar equations)

$$
\left\{\begin{aligned}
\dot{u}\left(c_{i, j}\right)-T f\left(u\left(c_{i, j}\right), u\left(\left(c_{i, j}-\frac{\tau_{1}}{T}\right) \bmod 1\right), \ldots, u\left(\left(c_{i, j}-\frac{\tau_{m}}{T}\right) \bmod 1\right)\right) & =0 \\
u^{0,0}-u^{L, 0} & =0 \\
\psi[u] & =0
\end{aligned}\right.
$$

- Approximation error: $\left\|u\left(s_{i, j}\right)-u^{i, j}\right\|=O\left(\delta^{M}\right)$ where

$$
\delta:=\max _{i=0,1, \ldots, L-1}\left|s_{i+1}-s_{i}\right|
$$

- If the DDE depends on parameter $\alpha \in \mathbb{R}$, the above defining system can be used for numerical continuation of the cycle.

