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1. SOLUTIONS, ORBITS, AND PHASE PORTRAITS

General planar system:
{
ẋ = P (x, y),
ẏ = Q(x, y)

or Ẋ = f(X), X ∈ R2,

where

X =

(
x
y

)
, f(X) =

(
P (x, y)
Q(x, y)

)
.

Theorem 1 If f is smooth than for any inital point

(
x0
y0

)
there exists

a unique locally defined solution t 7→
(
x(t)
y(t)

)
such that x(0) = x0 and

y(0) = y0.



Definition 1 Let I be the maximal definition interval of a solution t 7→
X(t), t ∈ I. The oriented by the advance of time image X(I) ⊂ R2 is

called the orbit.

X
f(X)

Vector field: X 7→ f(X)

f(X) 6= 0 is tangent to the orbit through X

⇒ orbits do not cross.

Definition 2 Phase portrait of a planar system is the collection of all

its orbits in R2.

We draw only key orbits, which determine the topology of the phase

portrait.



Types of orbits:

1. Equilibria: X(t) = X0 so that f(X0) = 0.

2. Periodic orbits (cycles): X(t) 6≡ X0, X(t+ T ) = X(t), t ∈ R
The minimal T > 0 is called the period of the cycle.

3. Connecting orbits: lim
t→±∞

X(t) = X± with f(X±) = 0.

If X− = X+ the connecting orbit is called homoclinic

If X− 6= X+ the connecting orbit is called heteroclinic.

4. All other orbits



2. EQUILIBRIA f(X) = 0 ⇔
{
P (x, y) = 0,
Q(x, y) = 0.

Jacobian matrix of the equilibrium X0 = (x0, y0):

A = fX(X0) =

(
Px Py
Qx Qy

)∣∣∣∣∣
x=x0,y=y0

Eigenvalues of the equilibrium X0 are the eigenvalues of A, i.e. the

solutions of

λ2 − σλ+ ∆ = 0,

where

σ = λ1 + λ2 = TrA = Px(x0, y0) +Qy(x0, y0),

∆ = λ1λ2 = detA = Px(x0, y0)Qy(x0, y0)− Py(x0, y0)Qx(x0, y0).

λ1,2 = −
σ

2
±

√
σ2

4
−∆

Definition 3 An equilibrium X0 is hyperbolic if <(λ) 6= 0.



Phase portraits of generic planar systems Ẏ = AY

(0, 2)

(1, 1)

Eigenvalues Phase portrait

node

focus

saddle

node

Stability

stable

unstable

unstable

focus

(2, 0)

(nu, ns)



Definition 4 Two systems are called topologically equivalent if their

phase portraits are homeomorphic, i.e. there is a continuous invertible

transformation that maps orbits of one system onto orbits of the other,

preserving their orientation.

Theorem 2 (Grobman-Hartman) Consider a smooth nonlinear sys-

tem

Ẋ = AX + F (X), F = O(‖X‖2) ≡ O(2),

and its linearization

Ẏ = AY.

If <(λ) 6= 0 for all eigenvalues of A, then these systems are locally

topologically equivalent near the origin.

Warning: A stable/unstable node is locally topologically equivalent to

a stable/unstable focus.



Trivial topological equivalences

1. Orbital equivalence:

Ẋ = f(X) ∼ Ẏ = g(Y )f(Y )

where g : R2 7→ R is smooth positive function; Y = h(X) = X

preserves orbits.

2. Smooth equivalence:

Ẋ = f(X) ∼ Ẏ = [hY (Y )]−1f(h(Y )),

where h : R2 → R2 is a smooth diffeomorphism; the substitution

X = h(Y ) transforms solutions onto solutions:

Ẋ = hY (Y )Ẏ = f(h(Y )) = f(X).

3. Smooth orbital equivalence: 1. + 2.



PERIODIC ORBITS AND LIMIT CYCLES

ξ

P (ξ)

X0(t)

0

Poincaré map:

ξ 7→ P (ξ) = µξ +O(2),

where the multiplier

µ = exp

(∫ T
0

(div f)(X0(t)) dt

)
> 0

Definition 5 A cycle of the planar system is hyperbolic if µ 6= 1.

The cycle is stable if µ < 1 and is unstable if µ > 1.

µ < 1

µ > 1

ξ

ξ′
ξ′ = ξ



HOMOCLINIC ORBITS

Homoclinic orbits to saddles:

small bigΓ0
Γ0

X0

X0

Definition 6 The real number σ = λ1 + λ2 = (div f)(X0) is called the

saddle quantity of X0.

σ < 0 σ > 0

Γ0
Γ0

X0
X0



Near the saddle, any planar system is C1-equivalent to its linearization.

Singular map:

ξ

η
η̃

∆

y

x

1

0 1

Q

{
ẋ = λ1x
ẏ = λ2y

ξ = ∆(η) = η
−λ1
λ2

Regular map:

η̃ = Q(ξ) = Aξ +O(2), A > 0.

Poincaré map:

η 7→ η̃ = Q(∆(η)) = Aη
−λ1
λ2 + . . .

The homoclinic orbit is stable if σ < 0 and is unstable if σ > 0.



If σ = λ1 + λ2 = 0, then

if
∫ ∞
−∞

(div f)(X0(t)) dt < 0 the homoclinic orbit is stable;

if
∫ ∞
−∞

(div f)(X0(t)) dt > 0 the homoclinic orbit is unstable.

Homoclinic orbits to saddle-nodes:

codim 1 codim 2

X0 X0

Γ0
Γ0



3. BIFURCATIONS AND THEIR CLASSIFICATION

Consider a smooth 2D system depending on one parameter

Ẋ = f(X,α), X ∈ R2, α ∈ R.

Definition 7 A point α0 is called a bifurcation point if in any neigh-

borhood of α0 there is a point α for which

Ẋ = f(X,α) 6∼ Ẋ = f(X,α0).

The appearance of a topologically non-equivalent system is called a

bifurcation.

Since the number of equilibria, the number of periodic orbits, and their

stability, as well as the presence of connecting orbits, are topological

invariants, a bifurcation of the 2D-system means a change of (some of)

these properties.



Definition 8 A codimension of a bifurcation is the number of condi-

tions on which the bifurcating phase object has to satisfy.

Classification of codimension-one bifurcations:

2 (near periodic orbits)
Local of cycles

3 and heteroclinic orbits
Bifurcations of homo−

− saddle homoclinic
− saddle−node homoclinic
− heteroclinic

− (Andronov−) Hopf
− saddle−node (fold)

Local (near equilibria)1

Bifurcations

in 2D ODEs
Global

− (cyclic) fold

Only codim 1 bifurcations occur in generic one-parameter systems.



4. LOCAL CODIM 1 BIFURCATIONS

• If X0 is a hyperbolic equilibrium of Ẋ = f(X,α0), then it remains

hyperbolic for all α sufficiently close to α0 (but can slightly shift).

• A local bifurcation can happen only to a non-hyperbolic equilibrium

with <(λ) = 0.

• Codimension-1 critical cases:

1. Fold (saddle-node): λ1 = 0

2. Andronov-Hopf (weak focus): λ1,2 = ±iω



Fold bifurcation: λ1 = 0, λ2 6= 0

By a linear diffeomorphism, Ẋ = f(X,0) can be transformed into
{
ẋ = ax2 + bxy + cy2 +O(3),
ẏ = λ2y +O(2).

If a 6= 0 then Ẋ = f(X) is locally topologically equivalent near the origin

to {
ẋ = ax2,
ẏ = λ2y.

Saddle-node (a > 0):

λ2 < 0 λ2 > 0



Theorem 3 (Fold normal form) If a 6= 0 and λ2 6= 0, then

Ẋ = f(X,α) is locally topologically equivalent near the saddle-node to
{
ẋ = β(α) + ax2,
ẏ = λ2y,

where β(0) = 0.

β < 0 β = 0 β > 0

a > 0, λ2 < 0

O1 O2 0
W c W c W c

Two equilibria O1,2 =
(
∓
√
−β
a ,0

)
collide and disappear in the 1D center

manifold W c = {y = 0}, provided β′(0) 6= 0 .



Andronov-Hopf bifurcation: λ1,2 = ±iω, ω > 0

By a linear diffeomorphism, Ẋ = f(X,0) can be transformed into
{
ẋ = −ωy +R(x, y), R = O(2),
ẏ = ωx+ S(x, y), S = O(2).

Introduce z = x+ iy ∈ C. Then this system becomes

ż = iωz + g(z, z̄),

where

g(z, z̄) = R

(
z + z̄

2
,
z − z̄

2i

)
+ iS

(
z + z̄

2
,
z − z̄

2i

)
.

Write its Taylor expansion in z, z̄:

g(z, z̄) =
1

2
g20z

2 + g11zz̄ +
1

2
g02z̄

2 +
1

2
g21z

2z̄ + . . .

Definition 9 The first Lyapunov coefficient is

l1 =
1

2ω2
<(ig20g11 + ωg21).



If l1 6= 0 then Ẋ = f(X) is locally topologically equivalent near the

origin to
{
ρ̇ = l1ρ

3,
ϕ̇ = 1,

where (ρ, ϕ) are polar coordinates: z = ρeiϕ.

Weak focus:

unstablestable

l1 < 0 l1 > 0



Theorem 4 (Andronov-Hopf normal form) If l1 6= 0 and ω > 0,

then Ẋ = f(X,α) is locally topologically equivalent near the weak focus

to {
ρ̇ = ρ(β(α) + l1ρ

2),
ϕ̇ = 1.

where β(0) = 0.

A limit cycle ρ0 =
√
−β
l1
> 0 appears while the focus changes stability.

The direction of the cycle bifurcation is determined by the first Lya-

punov coefficient l1 of the weak focus:

• supercritical (soft, non-catastrophic) Andronov-Hopf bifurcation

(l1 < 0);

• subcritical (hard, catastrophic) Andronov-Hopf bifurcation (l1 > 0).



Supercritical Andronov-Hopf bifurcation: l1 < 0

x
1

x2 x2

x
1

x2

x
1

α = 0 α > 0α < 0

β < 0 β = 0 β > 0

The stable equilibrium is replaced by small-amplitude oscillations within

an attracting domain.



Subcritical Andronov-Hopf bifurcation: l1 > 0

x1 x1x 1

x2x2x2

α = 0α < 0 α > 0
β > 0β = 0β < 0

The domain of attraction of the stable focus shrinks, while it becomes

unstable.



Example:

{
ẋ = y,

ẏ = −x+ αy + x2 + xy + y2.

At α = 0 the equilibrium x = y = 0 of the reversed system
{
ẋ = −y,
ẏ = x− x2 − xy − y2,

has eigenvalues λ1,2 = ±i (ω = 1).

Introduce z = x+ iy, then x2 + y2 = |z|2 = zz̄ and

ż = ẋ+ iẏ = − y + ix− ix2 − ixy − iy2

= iz − izz̄ −
1

4
(z2 − z̄2) = iz −

1

4
z2 − izz̄ +

1

4
z̄2

so that ω = 1, g20 = −
1

2
, g11 = −i, g02 =

1

2
, g21 = 0.

l̃1 =
1

2ω2
<(ig20g11 + ωg21) =

1

2

(
i

1

2
i+ 1 · 0

)
= −

1

4
.

For the original system, l1 = 1
4 > 0 ⇒ subcritical Hopf bifurcation (an

unstable cycle exists for small α < 0 but disappears for α > 0)



Practical computation of a and l1 in R2 (n = 2)

Suppose X0 = 0, α0 = 0 and write the Taylor expansion in the original

coordinates:

f(X,0) = AX +
1

2
B(X,X) +

1

6
C(X,X,X) +O(4)

where

(AX)i =
n∑

j=1

∂fi(U,0)

∂Uj

∣∣∣∣∣
U=0

Xj,

Bi(X,Y ) =
n∑

j,k=1

∂2fi(U,0)

∂Uj∂Uk

∣∣∣∣∣
U=0

XjYk,

Ci(X,Y, Z) =
n∑

j,k,l=1

∂3fi(U,0)

∂Uj∂Uk∂Ul

∣∣∣∣∣
U=0

XjYkZl,

for i = 1, . . . , n.



Theorem 5 The fold normal form coefficient can be computed as

a =
1

2
〈p,B(q, q)〉

where p, q ∈ R2 satisfy

Aq = ATp = 0

and pTq ≡ 〈p, q〉 = 1.

Theorem 6 The first Lyapunov coefficient can be computed in 2D

as

l1 =
1

2ω2
< [i〈p,B(q, q)〉〈p,B(q, q̄)〉+ ω〈p, C(q, q, q̄)〉]

where p, q ∈ C2 satisfy

Aq = iωq, ATp = −iωp

and p̄Tq ≡ 〈p, q〉 = 1.



Example: Hopf bifurcation in a prey-predator system

Consider the following system




ẋ1 = rx1(1− x1)−
cx1x2

α+ x1

ẋ2 = −dx2 +
cx1x2

α+ x1

∼
{
ẋ1 = rx1(α+ x1)(1− x1)− cx1x2
ẋ2 = −αdx2 + (c− d)x1x2

At α0 = c−d
c+d the last system has the equilibrium

(
x

(0)
1 , x

(0)
2

)
=
(

d
c+d,

rc
(c+d)2

)

with eigenvalues λ1,2 = ±iω, where ω2 = rc2d(c−d)
(c+d)3 > 0.

Translate the origin of the coordinates to this equilibrium by



x1 = x

(0)
1 +X1,

x2 = x
(0)
2 +X2.



This transforms the system into




Ẋ1 = −
cd

c+ d
X2 −

rd

c+ d
X2

1 − cX1X2 − rX3
1 ,

Ẋ2 =
rc(c− d)

(c+ d)2
X1 + (c− d)X1X2,

that can be represented as

Ẋ = AX +
1

2
B(X,X) +

1

6
C(X,X,X),

where

A =




0 −
cd

c+ d

ω2(c+ d)

cd
0


 , B(X,Y ) =



−

2rd

c+ d
X1Y1 − c(X1Y2 +X2Y1)

(c− d)(X1Y2 +X2Y1)




and

C(X,Y, Z) =

(
−6rX1Y1Z1

0

)
.



The complex vectors

q =

(
cd

−iω(c+ d)

)
, p =

1

2ωcd(c+ d)

(
ω(c+ d)
−icd

)
.

satisfy Aq = iωq, ATp = −iωp and 〈p, q〉 = 1.

Then

g20 = 〈p,B(q, q)〉 =
cd(c2 − d2 − rd) + iωc(c+ d)2

(c+ d)
,

g11 = 〈p,B(q, q̄)〉 = −
rcd2

(c+ d)
, g21 = 〈p, C(q, q, q̄)〉 = −3rc2d2,

and the first Lyapunov coefficient

l1(α0) =
1

2ω2
Re(ig20g11 + ωg21) = −

rc2d2

ω
< 0.



Therefore, a stable cycle bifurcates from the equilibrium via the super-

critical Hopf bifurcation for α < α0.

0E
E 0

x2x2

x1x1

α < α 0 α > α 0

0 01 1

α > α0

E0

E0

x1

x2 x2

0 11 0 x1

α < α0

One can prove that the cycle is unique.



5. CODIM 1 CYCLIC FOLD BIFURCATION

ξ

C0

0ξ̃

Parameter-dependent Poincaré map:

ξ 7→ ξ̃ = P (ξ, α),

where P (ξ,0) = ξ +O(2) (µ = 1)

Lemma 1 If

p2(0) =
1

2
Pξξ(0,0) 6= 0,

then there exists a smooth function δ = δ(α) such that the substitution

x = ξ + δ(α) reduces the map

ξ 7→ P (ξ, α) = p0(α) + [1 + g(α)]ξ + p2(α)ξ2 +O(3),

where g(0) = 0, p0(0) = P (0,0) = 0, to the form

x 7→ x̃ = β(α) + x+ b(α)x2 +O(3)

with β(0) = 0 and b(0) = p2(0) 6= 0.



Cyclic fold: x 7→ β + x+ bx2, b > 0

x̃x̃x̃

µ = 1

xx1

x2
x

0
x

β < 0 β = 0 β > 0

C0

C1

C2

x

Two hyperbolic cycles (unstable C1 and stable C2) collide forming a

non-hyperbolic cycle C0, and disappear.



6. CODIM 1 BIFURCATIONS OF CONNECTING ORBITS

• Saddle homoclinic bifurcation

0

1

1

y

x

ξ

η
η̃

∆

Q

β

Singular map: η 7→ ξ = η
−λ1
λ2 .

Regular map:

ξ 7→ η̃ = β(α) +A(α)ξ +O(2), A(0) > 0.

Poincaré map:

η 7→ η̃ = β(α) +A(α)η
−λ1
λ2 + . . .

unstable fixed point

stable fixed point

0
β = 0

β > 0

η̃ β > 0

β = 0

0
η

σ < 0 σ < 0

η

η̃

β < 0

β < 0



Saddle homoclinic bifurcation: σ < 0

β < 0 β = 0 β > 0

Γ0

Cβ

A stable cycle Cβ bifurcates from Γ0 while the separatrices exchange.



Saddle homoclinic bifurcation: σ > 0

β < 0 β = 0 β > 0

Γ0

Cβ

An unstable cycle Cβ bifurcates from Γ0 while the separatrices exchange.



• Homoclinic saddle-node bifurcation:

Γ0

x1 x2 x0

β < 0 β = 0 β > 0

Cβ

• Heteroclinic saddle bifurcation:

β < 0 β = 0 β < 0



Example: Allee effect in a prey-predator system
{
ẋ = x(x− l)(1− x)− xy,
ẏ = −γy(m− x).

1

2

4

5

1

2 4

5

3

3

m

l

1

1



7. LOCAL CODIM 2 BIFURCATIONS

Consider a smooth 2D system depending on two parameters

Ẋ = f(X,α), X ∈ R2, α ∈ R2.

π

α0

(X0, α0)

X

α1

α2

B

Γ

Curves of codim 1 bifurcations:

Fold :

{
f(X,α) = 0,

det fX(X,α) = 0.

Hopf :

{
f(X,α) = 0,

Tr fX(X,α) = 0.

In both cases, we have 3=2+1 equations in R4.

When we cross B = πΓ in the α-plane, the corresponding codim 1

bifurcation occurs.

One has to check that λ1,2 = ±iω along the Hopf curve.



Local codim 2 cases in the plane:

2

1

3

Fold : λ1 = 0

{
ẋ = ax2 + O(3)
ẏ = λ2y +O(2)

Hopf : λ1,2 = ±iω

{
ρ̇ = ωl1ρ

3 +O(4)
ϕ̇ = ω +O(1)

λ1 = 0, λ2 = 0

λ1 = 0, a = 0

λ1,2 = ±iω, l1 = 0

To meet each case, we need to “tune” two parameters while following

Γ (or B) ⇒ codim 2.



Cusp bifurcation: λ1 = 0, a = 0

The critical system Ẋ = f(X,0) can be transformed by a linear diffeo-

morphism to




ẋ = p11xy + 1
2p02y

2 + 1
6p30x

3 + . . . ,

ẏ = λ2y + 1
2q20x

2 + q11xy + 1
2q02y

2 +O(3).

It has an invariant 1D center manifold W c = {(x, y) : y = W (x)}:

W c

y

x

y = W (x) =
1

2
w2x

2 +O(3)

where w2 = −
q20

λ2
.

Thus, the restriction of Ẋ = f(X,0) to W c is

ẋ = cx3 +O(4), where c =
1

6

(
p30 −

3

λ2
q20p11

)
.



Theorem 7 (Cusp normal form) If c 6= 0, then Ẋ = f(X,α) is lo-

cally topologically equivalent near the cusp bifurcation to
{
ẋ = β1(α) + β2(α)x+ sx3,
ẏ = λ2y,

where β1(0) = β2(0) = 0 and s = sign(c) = ±1.

Fold curve(s) 4β3
2 + 27sβ2

1 = 0

Equilibrium manifold:

Γ

T2
0

ẋ = 0

x

β1 β2T1



Cusp bifurcation diagram (c < 0, λ2 < 0)

2

1

2

1

0

T2

T1

T2

0 β1

β2

T1

Three equilibria exist inside the wedge, pairwise colliding at its borders

T1,2 and leaving one equilibrium outside.



Bogdanov-Takens bifurcation: λ1 = λ2 = 0

The critical system Ẋ = f(X,0) can be transformed by a linear diffeo-

morphism to




ẋ = y + 1
2p20x

2 + p11xy + 1
2p02y

2 +O(3) ≡ P (x, y),

ẏ = 1
2q20x

2 + q11xy + 1
2q02y

2 + 1
6q03x

2 +O(3).

By a nonlinear local diffeomorphism (change of variables)
{
ξ = x,
η = P (x, y),

this system can be reduced near the origin to
{
ξ̇ = η,

η̇ = aξ2 + bξη + . . . ,

where

a =
1

2
q20, b = p20 + q11.



Theorem 8 (Bogdanov-Takens normal form) If ab 6= 0, then

Ẋ = f(X,α)

is locally topologically equivalent near the BT-bifurcation to
{
ẋ = y,

ẏ = β1(α) + β2(α)x+ x2 + sxy,

where β1(0) = β2(0) = 0 and s = sign(ab) = ±1.

Bifurcation curves (ab < 0):

• fold T : β1 = 1
4β

2
2

• Andronov-Hopf H : β1 = 0, β2 < 0

• saddle homoclinic P : β1 = − 6
25β

2
2 + O(3), β2 < 0 (global bifur-

cation)



BT bifurcation diagram (ab < 0)

3

1
4

3

1

4

2

2

0 T+

T+

T−

T−

H

β2

β10

P

,H

P

A unique limit cycle appears at Andronov-Hopf bifurcation curve H and

disappears via the saddle homoclinic orbit at the curve P .



Bautin (“generalized Hopf”) bifurcation: λ1,2 = ±iω, l1 = 0

The critical system Ẋ = f(X,0) can be transformed by a linear diffeo-

morphism to the complex form

ż = iωz +
∑

2≤j+k≤5

1

j!k!
gjkz

kz̄j +O(6),

which is locally smoothly equivalent to the Poincaré normal form

ẇ = iωw + c1w|w|2 + c2w|w|4 +O(6),

where the Lyapunov coefficients

lj =
1

ω
<(cj)

satisfy

2l1 =
1

ω

(
<(g21)−

1

ω
=(g20g11)

)
⇒ l1 =

1

2ω2
<(ig20g11 + ωg21)



If l1 = 0 then

12l2(0) =
1

ω
<(g32)

+
1

ω2
=[g20ḡ31 − g11(4g31 + 3ḡ22)−

1

3
g02(g40 + ḡ13)− g30g12]

+
1

ω3
{<[g20(ḡ11(3g12 − ḡ30) + g02

(
ḡ12 −

1

3
g30

)
+

1

3
ḡ02g03)

+ g11(ḡ02

(
5

3
ḡ30 + 3g12

)
+

1

3
g02ḡ03 − 4g11g30)]

+ 3=(g20g11) =(g21)}
+

1

ω4

{
=
[
g11ḡ02

(
ḡ2

20 − 3ḡ20g11 − 4g2
11

)]

+ =(g20g11)
[
3<(g20g11)− 2|g02|2

]}



Theorem 9 (Normal form for Bautin bifurcation) If l2 6= 0 and

ω 6= 0, then Ẋ = f(X,α) is locally topologically equivalent near Bautin

bifurcation to the normal form in the polar coordinates:
{
ρ̇ = ρ(β1(α) + β2(α)ρ2 + sρ4),
ϕ̇ = 1,

where β1(0) = β2(0) = 0 and s = sign(l2) = ±1.

Bifurcation curves (l2 < 0):

• superctitical Andronov-Hopf H− : β1 = 0, β2 < 0

• subctitical Andronov-Hopf H+ : β1 = 0, β2 > 0

• cyclic fold Tc : β1 = 1
4β

2
2, β2 > 0 (global bifurcation)



Bautin bifurcation diagram (l2 < 0)

3

3

2

1

2

1T

0

0 β1

β2

H−

H+
T

,H−

, H+

In the wedge between H+ and Tc there exist two limit cycles born via

different Andronov-Hopf bifurcations, which merge and disappear at the

cyclic fold curve Tc.



Example: Bazykin’s prey-predator model




ẋ1 = x1 −
x1x2

1 + αx1
− εx2

1,

ẋ2 = −γx2 +
x1x2

1 + αx1
− δx2

2 .
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Generic phase portraits:
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