Codim 1 and 2 bifurcations of planar ODEs

Yuri A. Kuznetsov

USS Applied Bifurcation Theory

$$
\text { July 15, } 2019
$$

Contents

1. Solutions, orbits, and phase portraits
2. Equilibria, periodic and homoclinic orbits
3. Bifurcations and their classification
4. Local codim 1 bifurcations

- fold (saddle-node)
- (Andronov-)Hopf

5. Codim 1 cyclic fold bifurcation
6. Codim 1 bifurcations of connecting orbits
7. Local codim 2 bifurcations

- cusp
- Bogdanov-Takens
- Bautin

Literature

1. A.A. Andronov, E.A. Leontovich, I.I. Gordon, and A.G. Maier Qualitative Theory of Second-Order Dynamic Systems, Willey \& Sons, London, 1973
2. A.A. Andronov, E.A. Leontovich, I.I. Gordon, and A.G. Maier Theory of Bifurcations of Dynamic Systems on a Plane, Willey \& Sons, London, 1973
3. F. Dumortier, J. Llibre, and J.C. Artés Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, Berlin, 2006
4. Yu.A. Kuznetsov Elements of Applied Bifurcation Theory, 3rd ed. Applied Mathematical Sciences 112, Springer-Verlag, New York, 2004

1. SOLUTIONS, ORBITS, AND PHASE PORTRAITS

General planar system:

$$
\left\{\begin{array}{l}
\dot{x}=P(x, y), \quad \text { or } \quad \dot{X}=f(X), \quad X \in \mathbb{R}^{2}, \\
\dot{y}=Q(x, y)
\end{array}\right.
$$

where

$$
X=\binom{x}{y}, \quad f(X)=\binom{P(x, y)}{Q(x, y)}
$$

Theorem 1 If f is smooth than for any inital point $\binom{x_{0}}{y_{0}}$ there exists a unique locally defined solution $t \mapsto\binom{x(t)}{y(t)}$ such that $x(0)=x_{0}$ and $y(0)=y_{0}$.

Definition 1 Let I be the maximal definition interval of a solution $t \mapsto$ $X(t), t \in I$. The oriented by the advance of time image $X(I) \subset \mathbb{R}^{2}$ is called the orbit.

Vector field: $X \mapsto f(X)$
$f(X) \neq 0$ is tangent to the orbit through X \Rightarrow orbits do not cross.

Definition 2 Phase portrait of a planar system is the collection of all its orbits in \mathbb{R}^{2}.

We draw only key orbits, which determine the topology of the phase portrait.

Types of orbits:

1. Equilibria: $\quad X(t)=X_{0}$ so that $f\left(X_{0}\right)=0$.
2. Periodic orbits (cycles): $X(t) \not \equiv X_{0}, X(t+T)=X(t), t \in \mathbb{R}$ The minimal $T>0$ is called the period of the cycle.
3. Connecting orbits: $\lim _{t \rightarrow \pm \infty} X(t)=X_{ \pm}$with $f\left(X_{ \pm}\right)=0$.

If $X_{-}=X_{+}$the connecting orbit is called homoclinic If $X_{-} \neq X_{+}$the connecting orbit is called heteroclinic.
4. All other orbits
2. EQUILIBRIA $f(X)=0 \Leftrightarrow\left\{\begin{array}{l}P(x, y)=0, \\ Q(x, y)=0 .\end{array}\right.$

Jacobian matrix of the equilibrium $X_{0}=\left(x_{0}, y_{0}\right)$:

$$
A=f_{X}\left(X_{0}\right)=\left.\left(\begin{array}{cc}
P_{x} & P_{y} \\
Q_{x} & Q_{y}
\end{array}\right)\right|_{x=x_{0}, y=y_{0}}
$$

Eigenvalues of the equilibrium X_{0} are the eigenvalues of A, i.e. the solutions of

$$
\lambda^{2}-\sigma \lambda+\Delta=0,
$$

where

$$
\begin{gathered}
\sigma=\lambda_{1}+\lambda_{2}=\operatorname{Tr} A=P_{x}\left(x_{0}, y_{0}\right)+Q_{y}\left(x_{0}, y_{0}\right) \\
\Delta=\lambda_{1} \lambda_{2}=\operatorname{det} A=P_{x}\left(x_{0}, y_{0}\right) Q_{y}\left(x_{0}, y_{0}\right)-P_{y}\left(x_{0}, y_{0}\right) Q_{x}\left(x_{0}, y_{0}\right) . \\
\lambda_{1,2}=-\frac{\sigma}{2} \pm \sqrt{\frac{\sigma^{2}}{4}-\Delta}
\end{gathered}
$$

Definition 3 An equilibrium X_{0} is hyperbolic if $\Re(\lambda) \neq 0$.

Phase portraits of generic planar systems $\dot{Y}=A Y$

$\left(n_{u}, n_{s}\right)$	Eigenvalues	Phase portrait	Stability
$(0,2)$		 node focus	stable
$(1,1)$		saddle	unstable
$(2,0)$		 node focus	unstable

Definition 4 Two systems are called topologically equivalent if their phase portraits are homeomorphic, i.e. there is a continuous invertible transformation that maps orbits of one system onto orbits of the other, preserving their orientation.

Theorem 2 (Grobman-Hartman) Consider a smooth nonlinear system

$$
\dot{X}=A X+F(X), \quad F=\mathcal{O}\left(\|X\|^{2}\right) \equiv O(2)
$$

and its linearization

$$
\dot{Y}=A Y
$$

If $\Re(\lambda) \neq 0$ for all eigenvalues of A, then these systems are locally topologically equivalent near the origin.

Warning: A stable/unstable node is locally topologically equivalent to a stable/unstable focus.

Trivial topological equivalences

1. Orbital equivalence:

$$
\dot{X}=f(X) \sim \dot{Y}=g(Y) f(Y)
$$

where $g: \mathbb{R}^{2} \mapsto \mathbb{R}$ is smooth positive function; $Y=h(X)=X$ preserves orbits.
2. Smooth equivalence:

$$
\dot{X}=f(X) \sim \dot{Y}=\left[h_{Y}(Y)\right]^{-1} f(h(Y))
$$

where $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a smooth diffeomorphism; the substitution $X=h(Y)$ transforms solutions onto solutions:

$$
\dot{X}=h_{Y}(Y) \dot{Y}=f(h(Y))=f(X)
$$

3. Smooth orbital equivalence: 1. +2 .

PERIODIC ORBITS AND LIMIT CYCLES

 Poincaré map:$$
\xi \mapsto P(\xi)=\mu \xi+O(2)
$$

where the multiplier

$$
\mu=\exp \left(\int_{0}^{T}(\operatorname{div} f)\left(X^{0}(t)\right) d t\right)>0
$$

Definition 5 A cycle of the planar system is hyperbolic if $\mu \neq 1$.

The cycle is stable if $\mu<1$ and is unstable if $\mu>1$.

HOMOCLINIC ORBITS

Homoclinic orbits to saddles:

Definition 6 The real number $\sigma=\lambda_{1}+\lambda_{2}=(\operatorname{div} f)\left(X_{0}\right)$ is called the saddle quantity of X_{0}.

Near the saddle, any planar system is C^{1}-equivalent to its linearization.

Singular map:

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x}=\lambda_{1} x \\
\dot{y}=\lambda_{2} y
\end{array}\right. \\
\xi=\Delta(\eta)=\eta^{-\frac{\lambda_{1}}{\lambda_{2}}}
\end{gathered}
$$

Regular map:

$$
\tilde{\eta}=Q(\xi)=A \xi+O(2), \quad A>0
$$

Poincaré map:

$$
\eta \mapsto \tilde{\eta}=Q(\Delta(\eta))=A \eta^{-\frac{\lambda_{1}}{\lambda_{2}}}+\ldots
$$

The homoclinic orbit is stable if $\sigma<0$ and is unstable if $\sigma>0$.

If $\sigma=\lambda_{1}+\lambda_{2}=0$, then
if $\int_{-\infty}^{\infty}(\operatorname{div} f)\left(X^{0}(t)\right) d t<0$ the homoclinic orbit is stable;
if $\int_{-\infty}^{\infty}(\operatorname{div} f)\left(X^{0}(t)\right) d t>0$ the homoclinic orbit is unstable.
Homoclinic orbits to saddle-nodes:

codim 1

codim 2

3. BIFURCATIONS AND THEIR CLASSIFICATION

Consider a smooth 2D system depending on one parameter

$$
\dot{X}=f(X, \alpha), \quad X \in \mathbb{R}^{2}, \alpha \in \mathbb{R}
$$

Definition 7 A point α_{0} is called a bifurcation point if in any neighborhood of α_{0} there is a point α for which

$$
\dot{X}=f(X, \alpha) \quad \nsim \quad \dot{X}=f\left(X, \alpha_{0}\right) .
$$

The appearance of a topologically non-equivalent system is called a bifurcation.

Since the number of equilibria, the number of periodic orbits, and their stability, as well as the presence of connecting orbits, are topological invariants, a bifurcation of the 2D-system means a change of (some of) these properties.

Definition 8 A codimension of a bifurcation is the number of conditions on which the bifurcating phase object has to satisfy.

Classification of codimension-one bifurcations:

Only codim 1 bifurcations occur in generic one-parameter systems.

4. LOCAL CODIM 1 BIFURCATIONS

- If X_{0} is a hyperbolic equilibrium of $\dot{X}=f\left(X, \alpha_{0}\right)$, then it remains hyperbolic for all α sufficiently close to α_{0} (but can slightly shift).
- A local bifurcation can happen only to a non-hyperbolic equilibrium with $\Re(\lambda)=0$.
- Codimension-1 critical cases:

1. Fold (saddle-node): $\lambda_{1}=0$
2. Andronov-Hopf (weak focus): $\lambda_{1,2}= \pm i \omega$

Fold bifurcation: $\lambda_{1}=0, \lambda_{2} \neq 0$
By a linear diffeomorphism, $\dot{X}=f(X, 0)$ can be transformed into

$$
\left\{\begin{array}{l}
\dot{x}=a x^{2}+b x y+c y^{2}+O(3), \\
\dot{y}=\lambda_{2} y+O(2) .
\end{array}\right.
$$

If $a \neq 0$ then $\dot{X}=f(X)$ is locally topologically equivalent near the origin to

$$
\left\{\begin{array}{l}
\dot{x}=a x^{2}, \\
\dot{y}=\lambda_{2} y .
\end{array}\right.
$$

Saddle-node ($a>0$):

Theorem 3 (Fold normal form) If $a \neq 0$ and $\lambda_{2} \neq 0$, then
$\dot{X}=f(X, \alpha)$ is locally topologically equivalent near the saddle-node to

$$
\left\{\begin{array}{l}
\dot{x}=\beta(\alpha)+a x^{2} \\
\dot{y}=\lambda_{2} y
\end{array}\right.
$$

where $\beta(0)=0$.

Two equilibria $O_{1,2}=\left(\mp \sqrt{\frac{-\beta}{a}}, 0\right)$ collide and disappear in the 1D center manifold $W^{c}=\{y=0\}$, provided $\beta^{\prime}(0) \neq 0$.

Andronov-Hopf bifurcation: $\lambda_{1,2}= \pm i \omega, \omega>0$

By a linear diffeomorphism, $\dot{X}=f(X, 0)$ can be transformed into

$$
\left\{\begin{array}{l}
\dot{x}=-\omega y+R(x, y), \quad R=O(2) \\
\dot{y}=\omega x+S(x, y), \quad S=O(2)
\end{array}\right.
$$

Introduce $z=x+i y \in \mathbb{C}$. Then this system becomes

$$
\dot{z}=i \omega z+g(z, \bar{z})
$$

where

$$
g(z, \bar{z})=R\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)+i S\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right) .
$$

Write its Taylor expansion in z, \bar{z} :

$$
g(z, \bar{z})=\frac{1}{2} g_{20} z^{2}+g_{11} z \bar{z}+\frac{1}{2} g_{02} \bar{z}^{2}+\frac{1}{2} g_{21} z^{2} \bar{z}+\ldots
$$

Definition 9 The first Lyapunov coefficient is

$$
l_{1}=\frac{1}{2 \omega^{2}} \Re\left(i g_{20} g_{11}+\omega g_{21}\right)
$$

If $l_{1} \neq 0$ then $\dot{X}=f(X)$ is locally topologically equivalent near the origin to

$$
\left\{\begin{array}{l}
\dot{\rho}=l_{1} \rho^{3} \\
\dot{\varphi}=1
\end{array}\right.
$$

where (ρ, φ) are polar coordinates: $z=\rho e^{i \varphi}$.

Weak focus:

$$
l_{1}<0
$$

unstable

$$
l_{1}>0
$$

Theorem 4 (Andronov-Hopf normal form) If $l_{1} \neq 0$ and $\omega>0$, then $\dot{X}=f(X, \alpha)$ is locally topologically equivalent near the weak focus to

$$
\left\{\begin{array}{l}
\dot{\rho}=\rho\left(\beta(\alpha)+l_{1} \rho^{2}\right) \\
\dot{\varphi}=1
\end{array}\right.
$$

where $\beta(0)=0$.
A limit cycle $\rho_{0}=\sqrt{\frac{-\beta}{l_{1}}}>0$ appears while the focus changes stability.
The direction of the cycle bifurcation is determined by the first Lyapunov coefficient l_{1} of the weak focus:

- supercritical (soft, non-catastrophic) Andronov-Hopf bifurcation $\left(l_{1}<0\right)$;
- subcritical (hard, catastrophic) Andronov-Hopf bifurcation ($l_{1}>0$).

Supercritical Andronov-Hopf bifurcation: $l_{1}<0$

The stable equilibrium is replaced by small-amplitude oscillations within an attracting domain.

Subcritical Andronov-Hopf bifurcation: $l_{1}>0$

The domain of attraction of the stable focus shrinks, while it becomes unstable.

Example: $\left\{\begin{array}{l}\dot{x}=y, \\ \dot{y}=-x+\alpha y+x^{2}+x y+y^{2} .\end{array}\right.$
At $\alpha=0$ the equilibrium $x=y=0$ of the reversed system

$$
\left\{\begin{array}{l}
\dot{x}=-y \\
\dot{y}=x-x^{2}-x y-y^{2}
\end{array}\right.
$$

has eigenvalues $\lambda_{1,2}= \pm i(\omega=1)$.

Introduce $z=x+i y$, then $x^{2}+y^{2}=|z|^{2}=z \bar{z}$ and

$$
\begin{aligned}
\dot{z} & =\dot{x}+i \dot{y}=-y+i x-i x^{2}-i x y-i y^{2} \\
& =i z-i z \bar{z}-\frac{1}{4}\left(z^{2}-\bar{z}^{2}\right)=i z-\frac{1}{4} z^{2}-i z \bar{z}+\frac{1}{4} \bar{z}^{2}
\end{aligned}
$$

so that $\omega=1, g_{20}=-\frac{1}{2}, g_{11}=-i, g_{02}=\frac{1}{2}, g_{21}=0$.

$$
\tilde{l}_{1}=\frac{1}{2 \omega^{2}} \Re\left(i g_{20} g_{11}+\omega g_{21}\right)=\frac{1}{2}\left(i \frac{1}{2} i+1 \cdot 0\right)=-\frac{1}{4} .
$$

For the original system, $l_{1}=\frac{1}{4}>0 \Rightarrow$ subcritical Hopf bifurcation (an unstable cycle exists for small $\alpha<0$ but disappears for $\alpha>0$)

Practical computation of a and l_{1} in $\mathbb{R}^{2}(n=2)$

Suppose $X_{0}=0, \alpha_{0}=0$ and write the Taylor expansion in the original coordinates:

$$
f(X, 0)=A X+\frac{1}{2} B(X, X)+\frac{1}{6} C(X, X, X)+O(4)
$$

where

$$
\begin{aligned}
(A X)_{i} & =\left.\sum_{j=1}^{n} \frac{\partial f_{i}(U, 0)}{\partial U_{j}}\right|_{U=0} X_{j}, \\
B_{i}(X, Y) & =\left.\sum_{j, k=1}^{n} \frac{\partial^{2} f_{i}(U, 0)}{\partial U_{j} \partial U_{k}}\right|_{U=0} X_{j} Y_{k}, \\
C_{i}(X, Y, Z) & =\left.\sum_{j, k, l=1}^{n} \frac{\partial^{3} f_{i}(U, 0)}{\partial U_{j} \partial U_{k} \partial U_{l}}\right|_{U=0} X_{j} Y_{k} Z_{l},
\end{aligned}
$$

for $i=1, \ldots, n$.

Theorem 5 The fold normal form coefficient can be computed as

$$
a=\frac{1}{2}\langle p, B(q, q)\rangle
$$

where $p, q \in \mathbb{R}^{2}$ satisfy

$$
A q=A^{\top} p=0
$$

and $p^{\top} q \equiv\langle p, q\rangle=1$.

Theorem 6 The first Lyapunov coefficient can be computed in 2D as

$$
l_{1}=\frac{1}{2 \omega^{2}} \Re[i\langle p, B(q, q)\rangle\langle p, B(q, \bar{q})\rangle+\omega\langle p, C(q, q, \bar{q})\rangle]
$$

where $p, q \in \mathbb{C}^{2}$ satisfy

$$
A q=i \omega q, \quad A^{\top} p=-i \omega p
$$

and $\bar{p}^{\top} q \equiv\langle p, q\rangle=1$.

Example: Hopf bifurcation in a prey-predator system

Consider the following system
$\left\{\begin{array}{l}\dot{x}_{1}=r x_{1}\left(1-x_{1}\right)-\frac{c x_{1} x_{2}}{\alpha+x_{1}} \\ \dot{x}_{2}=-d x_{2}+\frac{c x_{1} x_{2}}{\alpha+x_{1}}\end{array} \sim\left\{\begin{array}{l}\dot{x}_{1}=r x_{1}\left(\alpha+x_{1}\right)\left(1-x_{1}\right)-c x_{1} x_{2} \\ \dot{x}_{2}=-\alpha d x_{2}+(c-d) x_{1} x_{2}\end{array}\right.\right.$
At $\alpha_{0}=\frac{c-d}{c+d}$ the last system has the equilibrium $\left(x_{1}^{(0)}, x_{2}^{(0)}\right)=\left(\frac{d}{c+d}, \frac{r c}{(c+d)^{2}}\right)$
with eigenvalues $\lambda_{1,2}= \pm i \omega$, where $\omega^{2}=\frac{r c^{2} d(c-d)}{(c+d)^{3}}>0$.
Translate the origin of the coordinates to this equilibrium by

$$
\left\{\begin{array}{l}
x_{1}=x_{1}^{(0)}+X_{1} \\
x_{2}=x_{2}^{(0)}+X_{2}
\end{array}\right.
$$

This transforms the system into

$$
\left\{\begin{aligned}
\dot{X}_{1} & =-\frac{c d}{c+d} X_{2}-\frac{r d}{c+d} X_{1}^{2}-c X_{1} X_{2}-r X_{1}^{3} \\
\dot{X}_{2} & =\frac{r c(c-d)}{(c+d)^{2}} X_{1}+(c-d) X_{1} X_{2}
\end{aligned}\right.
$$

that can be represented as

$$
\dot{X}=A X+\frac{1}{2} B(X, X)+\frac{1}{6} C(X, X, X)
$$

where

$$
A=\left(\begin{array}{cc}
0 & -\frac{c d}{c+d} \\
\frac{\omega^{2}(c+d)}{c d} & 0
\end{array}\right), B(X, Y)=\binom{-\frac{2 r d}{c+d} X_{1} Y_{1}-c\left(X_{1} Y_{2}+X_{2} Y_{1}\right)}{(c-d)\left(X_{1} Y_{2}+X_{2} Y_{1}\right)}
$$

and

$$
C(X, Y, Z)=\binom{-6 r X_{1} Y_{1} Z_{1}}{0}
$$

The complex vectors

$$
q=\binom{c d}{-i \omega(c+d)}, \quad p=\frac{1}{2 \omega c d(c+d)}\binom{\omega(c+d)}{-i c d}
$$

satisfy $A q=i \omega q, A^{\top} p=-i \omega p$ and $\langle p, q\rangle=1$.

Then

$$
\begin{gathered}
g_{20}=\langle p, B(q, q)\rangle=\frac{c d\left(c^{2}-d^{2}-r d\right)+i \omega c(c+d)^{2}}{(c+d)} \\
g_{11}=\langle p, B(q, \bar{q})\rangle=-\frac{r c d^{2}}{(c+d)}, \quad g_{21}=\langle p, C(q, q, \bar{q})\rangle=-3 r c^{2} d^{2}
\end{gathered}
$$

and the first Lyapunov coefficient

$$
l_{1}\left(\alpha_{0}\right)=\frac{1}{2 \omega^{2}} \operatorname{Re}\left(i g_{20} g_{11}+\omega g_{21}\right)=-\frac{r c^{2} d^{2}}{\omega}<0
$$

Therefore, a stable cycle bifurcates from the equilibrium via the supercritical Hopf bifurcation for $\alpha<\alpha_{0}$.

One can prove that the cycle is unique.

5. CODIM 1 CYCLIC FOLD BIFURCATION

Parameter-dependent Poincaré map:

$$
\xi \mapsto \tilde{\xi}=P(\xi, \alpha),
$$

where $P(\xi, 0)=\xi+O(2) \quad(\mu=1)$

Lemma 1 If

$$
p_{2}(0)=\frac{1}{2} P_{\xi \xi}(0,0) \neq 0
$$

then there exists a smooth function $\delta=\delta(\alpha)$ such that the substitution $x=\xi+\delta(\alpha)$ reduces the map

$$
\xi \mapsto P(\xi, \alpha)=p_{0}(\alpha)+[1+g(\alpha)] \xi+p_{2}(\alpha) \xi^{2}+O(3)
$$

where $g(0)=0, p_{0}(0)=P(0,0)=0$, to the form

$$
x \mapsto \tilde{x}=\beta(\alpha)+x+b(\alpha) x^{2}+O(3)
$$

with $\beta(0)=0$ and $b(0)=p_{2}(0) \neq 0$.

Cyclic fold: $x \mapsto \beta+x+b x^{2}, b>0$

Two hyperbolic cycles (unstable C_{1} and stable C_{2}) collide forming a non-hyperbolic cycle C_{0}, and disappear.

6. CODIM 1 BIFURCATIONS OF CONNECTING ORBITS

- Saddle homoclinic bifurcation

Singular map: $\eta \mapsto \xi=\eta^{-\frac{\lambda_{1}}{\lambda_{2}}}$.
Regular map:

$$
\xi \mapsto \tilde{\eta}=\beta(\alpha)+A(\alpha) \xi+O(2), \quad A(0)>0
$$

Poincaré map:

$$
\eta \mapsto \tilde{\eta}=\beta(\alpha)+A(\alpha) \eta^{-\frac{\lambda_{1}}{\lambda_{2}}}+\ldots
$$

$\sigma<0$

$\sigma<0$

Saddle homoclinic bifurcation: $\sigma<0$

A stable cycle C_{β} bifurcates from Γ_{0} while the separatrices exchange.

Saddle homoclinic bifurcation: $\sigma>0$

An unstable cycle C_{β} bifurcates from Γ_{0} while the separatrices exchange.

- Homoclinic saddle-node bifurcation:

- Heteroclinic saddle bifurcation:

$\beta<0$

$\beta=0$

$\beta<0$

Example: Allee effect in a prey-predator system

$$
\left\{\begin{array}{l}
\dot{x}=x(x-l)(1-x)-x y \\
\dot{y}=-\gamma y(m-x)
\end{array}\right.
$$

7. LOCAL CODIM 2 BIFURCATIONS

Consider a smooth 2D system depending on two parameters

$$
\dot{X}=f(X, \alpha), \quad X \in \mathbb{R}^{2}, \alpha \in \mathbb{R}^{2} .
$$

Curves of codim 1 bifurcations:

$$
\begin{aligned}
& \text { Fold : }\left\{\begin{aligned}
f(X, \alpha) & =0 \\
\operatorname{det} f_{X}(X, \alpha) & =0
\end{aligned}\right. \\
& \text { Hopf : }\left\{\begin{array}{r}
f(X, \alpha)
\end{array}=0\right. \\
& \operatorname{Tr} f_{X}(X, \alpha)
\end{aligned}=0 . \begin{aligned}
&
\end{aligned}
$$

In both cases, we have $3=2+1$ equations in \mathbb{R}^{4}.
When we cross $B=\pi \Gamma$ in the α-plane, the corresponding codim 1 bifurcation occurs.

One has to check that $\lambda_{1,2}= \pm i \omega$ along the Hopf curve.

Local codim 2 cases in the plane:

$$
\begin{aligned}
& \text { Fold : } \lambda_{1}=0 \\
& \mathrm{f}: \lambda_{1,2}= \pm i \omega \quad\left\{\begin{array}{l}
\dot{x}=a x^{2}+O(3) \\
\dot{y}=\lambda_{2} y+O(2) \\
\dot{\rho}=\omega l_{1} \rho^{3}+O(4) \\
\dot{\varphi}=\omega+O(1)
\end{array}\right. \\
& \lambda_{1}=0, a=0 \\
& \lambda_{1,2}= \pm i \omega, l_{1}=0
\end{aligned}
$$

To meet each case, we need to "tune" two parameters while following $\Gamma($ or $B) \Rightarrow \operatorname{codim} 2$.

Cusp bifurcation: $\lambda_{1}=0, a=0$

The critical system $\dot{X}=f(X, 0)$ can be transformed by a linear diffeomorphism to

$$
\left\{\begin{aligned}
\dot{x} & =p_{11} x y+\frac{1}{2} p_{02} y^{2}+\frac{1}{6} p_{30} x^{3}+\ldots \\
\dot{y} & =\lambda_{2} y+\frac{1}{2} q_{20} x^{2}+q_{11} x y+\frac{1}{2} q_{02} y^{2}+O(3)
\end{aligned}\right.
$$

It has an invariant 1D center manifold $W^{c}=\{(x, y): y=W(x)\}$:

$$
y=W(x)=\frac{1}{2} w_{2} x^{2}+O(3)
$$

where $w_{2}=-\frac{q_{20}}{\lambda_{2}}$.

Thus, the restriction of $\dot{X}=f(X, 0)$ to W^{c} is

$$
\dot{x}=c x^{3}+O(4), \quad \text { where } \quad c=\frac{1}{6}\left(p_{30}-\frac{3}{\lambda_{2}} q_{20} p_{11}\right) .
$$

Theorem 7 (Cusp normal form) If $c \neq 0$, then $\dot{X}=f(X, \alpha)$ is locally topologically equivalent near the cusp bifurcation to

$$
\left\{\begin{array}{l}
\dot{x}=\beta_{1}(\alpha)+\beta_{2}(\alpha) x+s x^{3} \\
\dot{y}=\lambda_{2} y
\end{array}\right.
$$

where $\beta_{1}(0)=\beta_{2}(0)=0$ and $s=\operatorname{sign}(c)= \pm 1$.

Fold curve(s) $4 \beta_{2}^{3}+27 s \beta_{1}^{2}=0$

Equilibrium manifold:

Cusp bifurcation diagram $\left(c<0, \lambda_{2}<0\right)$

Three equilibria exist inside the wedge, pairwise colliding at its borders $T_{1,2}$ and leaving one equilibrium outside.

Bogdanov-Takens bifurcation: $\lambda_{1}=\lambda_{2}=0$

The critical system $\dot{X}=f(X, 0)$ can be transformed by a linear diffeomorphism to

$$
\left\{\begin{array}{l}
\dot{x}=y+\frac{1}{2} p_{20} x^{2}+p_{11} x y+\frac{1}{2} p_{02} y^{2}+O(3) \equiv P(x, y) \\
\dot{y}=\frac{1}{2} q_{20} x^{2}+q_{11} x y+\frac{1}{2} q_{02} y^{2}+\frac{1}{6} q_{03} x^{2}+O(3)
\end{array}\right.
$$

By a nonlinear local diffeomorphism (change of variables)

$$
\left\{\begin{array}{l}
\xi=x \\
\eta=P(x, y)
\end{array}\right.
$$

this system can be reduced near the origin to

$$
\left\{\begin{array}{l}
\dot{\xi}=\eta \\
\dot{\eta}=a \xi^{2}+b \xi \eta+\ldots
\end{array}\right.
$$

where

$$
a=\frac{1}{2} q_{20}, \quad b=p_{20}+q_{11}
$$

Theorem 8 (Bogdanov-Takens normal form) If $a b \neq 0$, then

$$
\dot{X}=f(X, \alpha)
$$

is locally topologically equivalent near the BT-bifurcation to

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=\beta_{1}(\alpha)+\beta_{2}(\alpha) x+x^{2}+s x y
\end{array}\right. \\
& \text { where } \beta_{1}(0)=\beta_{2}(0)=0 \text { and } s=\operatorname{sign}(a b)= \pm 1
\end{aligned}
$$

Bifurcation curves $(a b<0)$:

- fold $T: \beta_{1}=\frac{1}{4} \beta_{2}^{2}$
- Andronov-Hopf $H: \beta_{1}=0, \beta_{2}<0$
- saddle homoclinic $P: \beta_{1}=-\frac{6}{25} \beta_{2}^{2}+O(3), \beta_{2}<0$ (global bifurcation)

BT bifurcation diagram $(a b<0)$

A unique limit cycle appears at Andronov-Hopf bifurcation curve H and disappears via the saddle homoclinic orbit at the curve P.

Bautin ("generalized Hopf") bifurcation: $\lambda_{1,2}= \pm i \omega, l_{1}=0$

The critical system $\dot{X}=f(X, 0)$ can be transformed by a linear diffeomorphism to the complex form

$$
\dot{z}=i \omega z+\sum_{2 \leq j+k \leq 5} \frac{1}{j!k!} g_{j k} z^{k} \bar{z}^{j}+O(6),
$$

which is locally smoothly equivalent to the Poincaré normal form

$$
\dot{w}=i \omega w+c_{1} w|w|^{2}+c_{2} w|w|^{4}+O(6)
$$

where the Lyapunov coefficients

$$
l_{j}=\frac{1}{\omega} \Re\left(c_{j}\right)
$$

satisfy

$$
2 l_{1}=\frac{1}{\omega}\left(\Re\left(g_{21}\right)-\frac{1}{\omega} \Im\left(g_{20} g_{11}\right)\right) \Rightarrow l_{1}=\frac{1}{2 \omega^{2}} \Re\left(i g_{20} g_{11}+\omega g_{21}\right)
$$

$$
\begin{aligned}
& \text { If } l_{1}=0 \text { then } \\
& \begin{aligned}
12 l_{2}(0)= & \frac{1}{\omega} \Re\left(g_{32}\right)
\end{aligned} \\
& \begin{aligned}
+ & \frac{1}{\omega^{2}} \Im\left[g_{20} \bar{g}_{31}-g_{11}\left(4 g_{31}+3 \bar{g}_{22}\right)-\frac{1}{3} g_{02}\left(g_{40}+\bar{g}_{13}\right)-g_{30} g_{12}\right] \\
+ & \frac{1}{\omega^{3}}\left\{\Re \left[g_{20}\left(\bar{g}_{11}\left(3 g_{12}-\bar{g}_{30}\right)+g_{02}\left(\bar{g}_{12}-\frac{1}{3} g_{30}\right)+\frac{1}{3} \bar{g}_{02} g_{03}\right)\right.\right. \\
& \left.+g_{11}\left(\bar{g}_{02}\left(\frac{5}{3} \bar{g}_{30}+3 g_{12}\right)+\frac{1}{3} g_{02} \bar{g}_{03}-4 g_{11} g_{30}\right)\right] \\
& \left.\quad+3 \Im\left(g_{20} g_{11}\right) \Im\left(g_{21}\right)\right\}
\end{aligned} \\
& \begin{array}{r}
+\frac{1}{\omega^{4}}\left\{\Im\left[g_{11} \bar{g}_{02}\left(\bar{g}_{20}^{2}-3 \bar{g}_{20} g_{11}-4 g_{11}^{2}\right)\right]\right. \\
\\
\\
\left.\quad+\quad \Im\left(g_{20} g_{11}\right)\left[3 \Re\left(g_{20} g_{11}\right)-2\left|g_{02}\right|^{2}\right]\right\}
\end{array}
\end{aligned}
$$

Theorem 9 (Normal form for Bautin bifurcation) If $l_{2} \neq 0$ and $\omega \neq 0$, then $\dot{X}=f(X, \alpha)$ is locally topologically equivalent near Bautin bifurcation to the normal form in the polar coordinates:

$$
\left\{\begin{array}{l}
\dot{\rho}=\rho\left(\beta_{1}(\alpha)+\beta_{2}(\alpha) \rho^{2}+s \rho^{4}\right) \\
\dot{\varphi}=1
\end{array}\right.
$$

where $\beta_{1}(0)=\beta_{2}(0)=0$ and $s=\operatorname{sign}\left(l_{2}\right)= \pm 1$.

Bifurcation curves $\left(l_{2}<0\right)$:

- superctitical Andronov-Hopf $H^{-}: \beta_{1}=0, \beta_{2}<0$
- subctitical Andronov-Hopf $H^{+}: \beta_{1}=0, \beta_{2}>0$
- cyclic fold $T_{c}: \beta_{1}=\frac{1}{4} \beta_{2}^{2}, \beta_{2}>0$ (global bifurcation)

Bautin bifurcation diagram $\left(l_{2}<0\right)$

In the wedge between H^{+}and T_{c} there exist two limit cycles born via different Andronov-Hopf bifurcations, which merge and disappear at the cyclic fold curve T_{c}.

Example: Bazykin's prey-predator model

$$
\left\{\begin{aligned}
\dot{x}_{1} & =x_{1}-\frac{x_{1} x_{2}}{1+\alpha x_{1}}-\varepsilon x_{1}^{2} \\
\dot{x}_{2} & =-\gamma x_{2}+\frac{x_{1} x_{2}}{1+\alpha x_{1}}-\delta x_{2}^{2}
\end{aligned}\right.
$$

Generic phase portraits:

