Codim 1 bifurcations of *n*-dimensional ODEs

Yuri A. Kuznetsov

USS Applied Bifurcation Theory
July 15, 2019

Contents

- 1. Solutions and orbits:
 - equilibria
 - cycles
 - connecting orbits
 - compact invariant manifolds
 - strange invariant sets
- 2. Bifurcations of n-dimensional ODEs
 - local equilibrium bifurcations
 - local bifrcations of cycles
 - bifurcations of homoclinic orbits to equilibria
 - some other cases

Literature

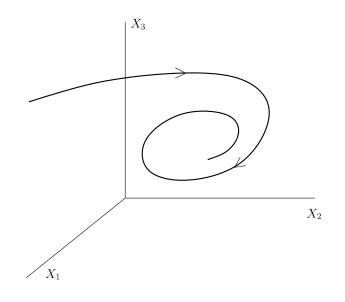
- 1. L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, and L.O. Chua *Methods of Qualitative Theory in Nonlinear Dynamics*, Part I, World Scientific, Singapore, 1998
- 2. L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, and L.O. Chua *Methods of Qualitative Theory in Nonlinear Dynamics*, Part II, World Scientific, Singapore, 2001
- 3. V.I. Arnol'd, V.S. Afraimovich, Yu.S. Il'yashenko, and L.P. Shil'nikov *Bifurcation theory*, In: V.I. Arnol'd (ed), Dynamical Systems V. Encyclopaedia of Mathematical Sciences, Springer-Verlag, New York, 1994
- 4. Yu.A. Kuznetsov *Elements of Applied Bifurcation Theory*, 3rd ed. Applied Mathematical Sciences 112, Springer-Verlag, New York, 2004

1. SOLUTIONS AND ORBITS

Consider a smooth system

$$\dot{X} = f(X), \quad X \in \mathbb{R}^n.$$

Orbits, phase portraits, and topological equivalence are defined as in the case n=2



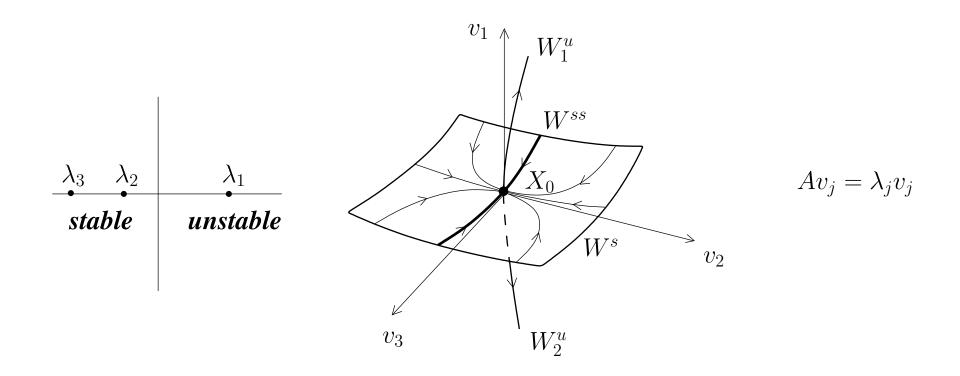
• Equilibria: $f(X_0) = 0$

Definition 1 An equilibrium is called **hyperbolic** if $\Re(\lambda) \neq 0$ for all eigenvalues of its Jacobian matrix $A = f_X(X_0)$.

Theorem 1 (Grobman-Hartman) If equilibrium $X_0 = 0$ is hyperbolic, $\dot{X} = f(X)$ is locally topologically equivalent near the origin to $\dot{Y} = AY$.

Stable and unstable invariant manifolds of equilibria:

If a hyperbolic equilibrium X_0 has n_s eigenvalues with $\Re(\lambda) < 0$ and n_u eigenvalues with $\Re(\lambda) > 0$, it has the n_s -dimensional smooth invariant manifold W^s composed of all orbits approaching X_0 as $t \to \infty$, and the n_u -dimensional smooth invariant manifold W^u composed of all orbits approaching X_0 as $t \to -\infty$



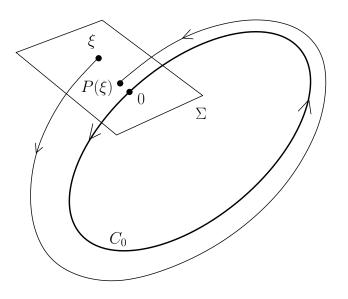
Periodic orbits (cycles)

The **Poincaré map** $\xi \mapsto \tilde{\xi} = P(\xi)$ is defined on a smooth (n-1)-dimensional crossection:

$$P: \Sigma \to \Sigma$$
.

If C_0 coresponds to $\xi = 0$ then P(0) = 0 and $P(\xi) = M\xi + O(2)$

$$\mu_1 \mu_2 \cdots \mu_{n-1} = \exp\left(\int_0^{T_0} (\text{div } f)(X^0(t))dt\right) > 0$$

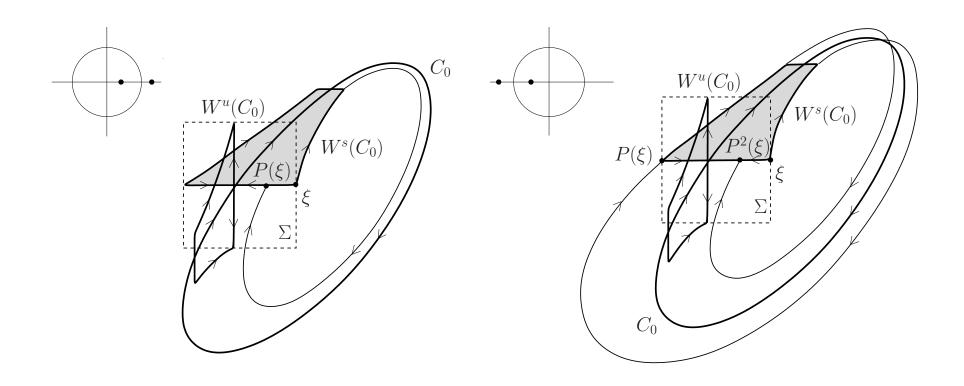


Definition 2 A cycle is called **hyperbolic** if $|\mu| \neq 1$ for all eigenvalues (multipliers) of the matrix $M = P_{\xi}(0)$.

Theorem 2 (Grobman-Hartman for maps) The Poincaré map $\xi \mapsto P(\xi)$ of a hyperbolic cycle is locally topologically equivalent near the origin to $\xi \mapsto M\xi$.

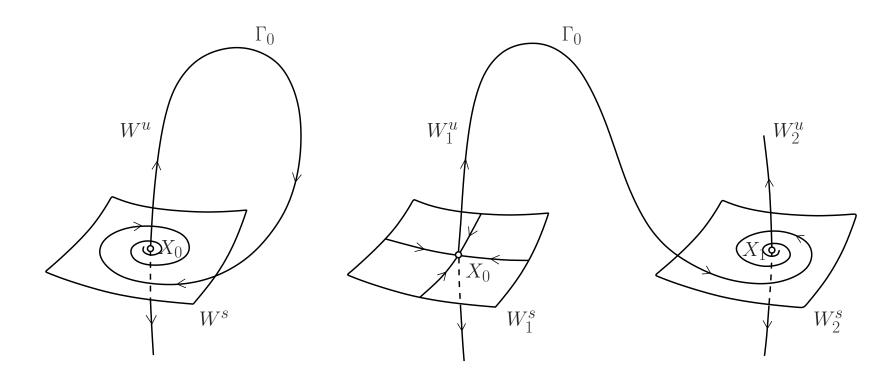
Stable and unstable invariant manifolds of cycles:

If a hyperbolic cycle C_0 has m_s multipliers with $|\mu| < 1$ and m_u multipliers with $|\mu| > 1$, it has the $(m_s + 1)$ -dimensional smooth invariant manifold W^s composed of all orbits approaching C_0 as $t \to \infty$, and the $(m_u + 1)$ -dimensional smooth invariant manifold W^u composed of all orbits approaching C_0 as $t \to -\infty$

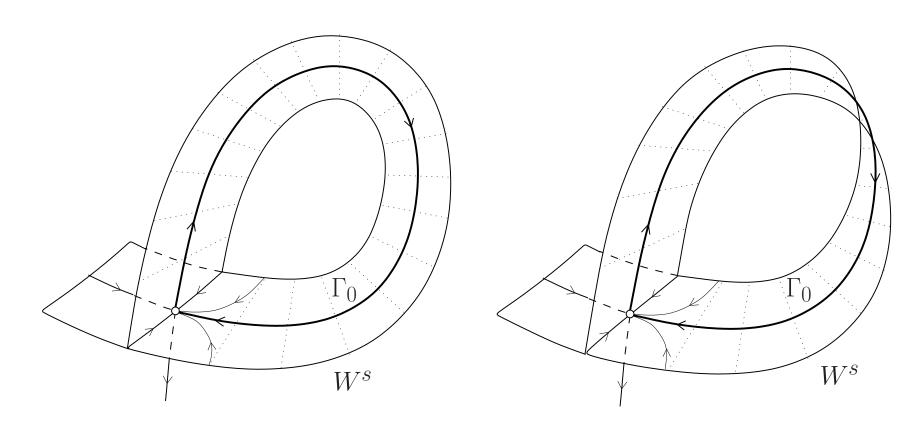


Connecting orbits

Homoclinic orbits are intersections of W^u and W^s of an equilibrium/cycle. **Heteroclinic orbits** are intersections of W^u and W^s of two different equilibria/cycles.



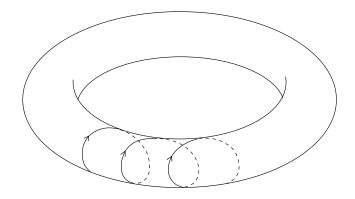
Generically, the closure of the 2D invariant manifold near a homoclinic orbit Γ_0 to an equilibriun with real eigenvalues (**saddle**) in \mathbb{R}^3 is either **simple (orientable)** or **twisted (non-orientable)**:



• Compact invariant manifolds

1. tori

Example: 2D-torus \mathbb{T}^2 with periodic or quasi-periodic orbits



- 2. spheres
- 3. Klein bottles

• Strange (chaotic) invariant sets

- have **fractal** structure (not a manifold);
- contain infinite number of hyperbolic cycles;
- demonstrate **sensitive dependence** of solutions on initial conditions;
- can be attracting (strange attractors);
- orbits can be coded by sequences of symbols (symbolic dynamics).

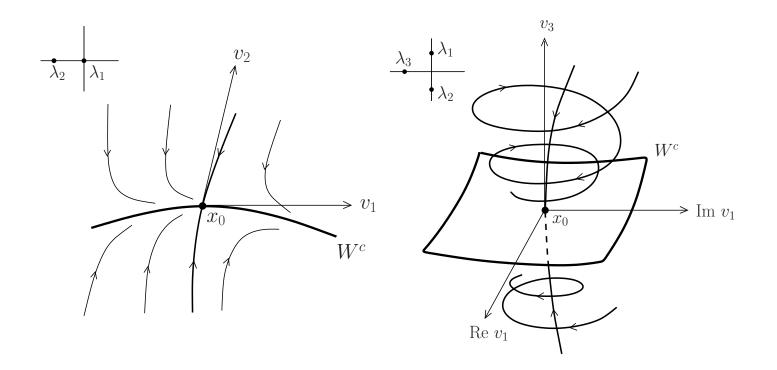
2. BIFURCATIONS OF N-DIMENSIONAL ODES $\dot{X} = f(X, \alpha)$

• Local (equilibrium) bifurcations

Center manifold reduction: Let $X_0 = 0$ be non-hyperbolic with stable, usntable, and critical eigenvalues:



Theorem 3 For all sufficiently small $\|\alpha\|$, there exists a local invariant center manifold $W^c(\alpha)$ of dimension n_c that is locally attracting if $n_u = 0$, repelling if $n_s = 0$, and of saddle type if $n_s n_u > 0$. Moreover $W^c(0)$ is tangent to the critical eigenspace of $A = f_X(0,0)$.



Remark: $W^c(0)$ is **not unique**; however, all $W^c(0)$ have the same Taylor expansion.

Theorem 4 If $\dot{\xi} = f(\xi, \alpha)$ is the restriction of $\dot{X} = f(X, \alpha)$ to $W^c(\alpha)$, then this system is locally topologically equivalent to

$$\begin{cases} \dot{\xi} = f(\xi, \alpha), & \xi \in \mathbb{R}^{n_c}, \alpha \in \mathbb{R}^m, \\ \dot{x} = -x, & x \in \mathbb{R}^{n_s}, \\ \dot{y} = y, & y \in \mathbb{R}^{n_u}. \end{cases}$$

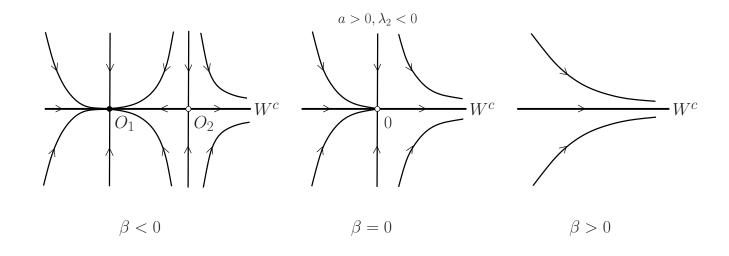
Codim 1 equilibrium bifurcations: $\alpha \in \mathbb{R}$

$$f(X,0) = AX + \frac{1}{2}B(X,X) + \frac{1}{6}C(X,X,X) + O(4)$$

• Fold (saddle-node): $\lambda_1 = 0 \ (n_c = 1)$

Let $a = \frac{1}{2}\langle q, B(q,q)\rangle$ where $Aq = A^{\mathsf{T}}p = 0$ with $\langle p, q \rangle = \langle q, q \rangle = 1$.

If $a \neq 0$ then the restriction of $\dot{X} = f(X, \alpha)$ to its $W^c(\alpha)$ is locally topologically equivalent to $\dot{\xi} = \beta(\alpha) + a\xi^2$.

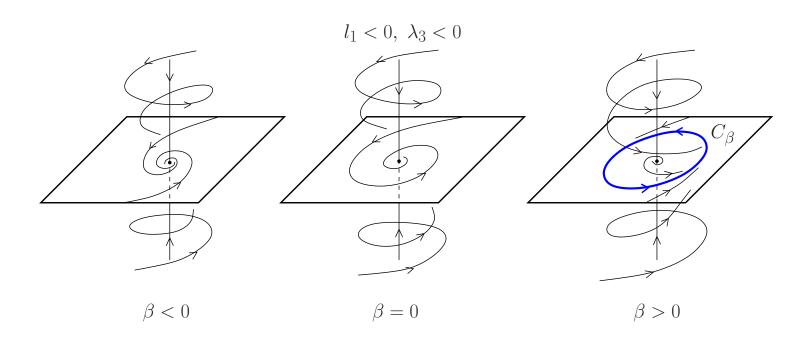


• Andronov-Hopf: $\lambda_{1,2} = \pm i\omega, \omega > 0$ $(n_c = 2)$

$$l_1 = \frac{1}{2\omega} \Re \left[\langle p, C(q, q, \bar{q}) - 2\langle p, B(q, A^{-1}B(q, \bar{q})) \rangle + \langle p, B(\bar{q}, (2i\omega E_n - A)^{-1}B(q, q)) \rangle \right],$$

where $Aq = i\omega q$, $A^{\mathsf{T}}p = -i\omega p$, $\langle p, q \rangle = \langle q, q \rangle = 1$.

If $l_1 \neq 0$ then the restriction of $\dot{X} = f(X, \alpha)$ to its $W^c(\alpha)$ is locally topologically equivalent to $\begin{cases} \dot{\rho} = \rho(\beta(\alpha) + l_1 \rho^2), \\ \dot{\varphi} = 1. \end{cases}$



Codim 2 equilibrium bifurcations: $\alpha \in \mathbb{R}^2$

1. Cusp: $\lambda_1 = 0, a = 0 \ (n_c = 1)$

If $c \neq 0$, then the restriction of $\dot{X} = f(X, \alpha)$ to $W^c(\alpha)$ is locally topologically equivalent to $\dot{\xi} = \beta_1(\alpha) + \beta_2(\alpha)\xi + s\xi^3$, where $s = \text{sign}(c) = \pm 1$.

2. Bogdanov-Takens: $\lambda_1 = \lambda_2 = 0 \ (n_c = 2)$

If $ab \neq 0$, then the restriction of $\dot{X} = f(X,\alpha)$ to $W^c(\alpha)$ is locally topologically equivalent to $\dot{x} = y$, $\dot{y} = \beta_1(\alpha) + \beta_2(\alpha)x + x^2 + sxy$, where $s = \text{sign}(ab) = \pm 1$.

3. Bautin: $\lambda_{1,2} = \pm i\omega, \omega > 0 \ (n_c = 2)$

If $l_2 \neq 0$, then the restriction of $\dot{X} = f(X, \alpha)$ to $W^c(\alpha)$ is locally topologically equivalent to $\dot{\rho} = \rho(\beta_1(\alpha) + \beta_2(\alpha)\rho^2 + s\rho^4)$, $\dot{\varphi} = 1$, where $s = \text{sign}(l_2) = \pm 1$.

4. **Fold-Hopf**: $\lambda_1 = 0$, $\lambda_{2,3} = \pm i\omega$, $\omega > 0$ ($n_c = 3$)

Generically, the restriction of $\dot{X}=f(X,\alpha)$ to $W^c(\alpha)$ is smoothly orbitally equivalent to

$$\begin{cases} \dot{\xi} = \beta_1(\alpha) + \xi^2 + s\rho^2 + P(\xi, \rho, \varphi, \alpha), \\ \dot{\rho} = \rho(\beta_2(\alpha) + \theta(\alpha)\xi + \xi^2) + Q(\xi, \rho, \varphi, \alpha), \\ \dot{\varphi} = \omega_1(\alpha) + \theta_1(\alpha)\xi + R(\xi, \rho, \varphi, \alpha), \end{cases}$$

where $s = \pm 1$, $\theta(0) \neq 0$, $\omega_1(0) > 0$, $P, Q, R = \mathcal{O}(\|(\xi, \rho)\|^4)$.

The bifurcation diagrams **depend on** O(4)-terms. "Big picture" is determined by the 'truncated normal form' without the O(4)-terms.

There exist **invariant tori** and **homoclinic orbits** near the fold-Hopf bifurcation.

5. **Hopf-Hopf**: $\lambda_{1,2} = \pm \omega_1$, $\lambda_{3,4} = \pm i\omega_2$, $\omega_j > 0$ $(n_c = 4)$

Generically, the restriction of $\dot{X}=f(X,\alpha)$ to $W^c(\alpha)$ is smoothly orbitally equivalent to

$$\begin{cases} \dot{r}_{1} = r_{1}(\beta_{1}(\alpha) + p_{11}(\alpha)r_{1}^{2} + p_{12}(\alpha)r_{2}^{2} + s_{1}(\alpha)r_{2}^{4}) + \Phi_{1}(r, \varphi, \alpha), \\ \dot{r}_{2} = r_{2}(\beta_{2}(\alpha) + p_{21}(\alpha)r_{1}^{2} + p_{22}(\alpha)r_{2}^{2} + s_{2}(\alpha)r_{1}^{4}) + \Phi_{2}(r, \varphi, \alpha), \\ \dot{\varphi}_{1} = \omega_{1}(\alpha) + \Psi_{1}(r, \varphi, \alpha), \\ \dot{\varphi}_{2} = \omega_{2}(\alpha) + \Psi_{2}(r, \varphi, \alpha) \end{cases}$$

where $\Phi_j = \mathcal{O}(\|r\|^6)$, $\Psi_j = \mathcal{O}(\|r\|)$.

The bifurcation diagrams **depend on** Φ_{j} and Ψ_{j} -terms. "Big picture" is determined by the 'truncated normal form' without these terms.

There exist **invariant tori** and **homoclinic orbits** near the Hopf-Hopf bifurcation.

Local bifurcations of cycles

$\operatorname{Im} \mu$ Re μ m_s m_c m_u

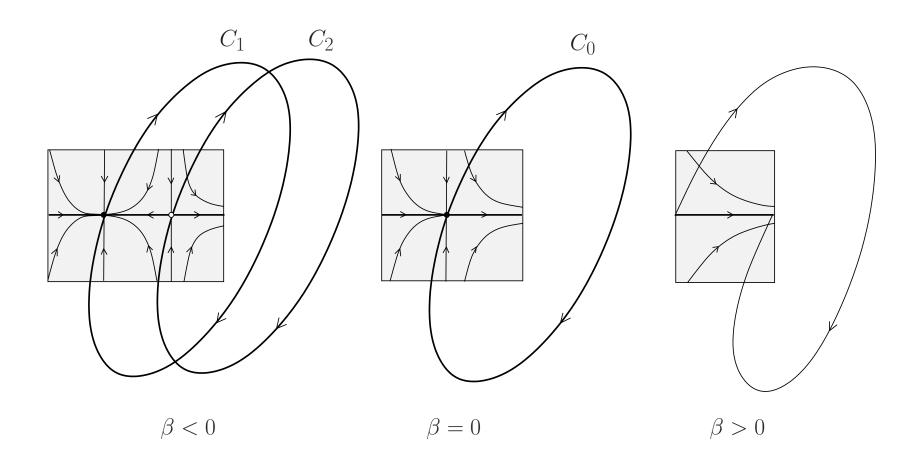
Critical cases of codim 1:

• cyclic fold (saddle-node): $\mu_1 = 1$

- period-doubling: $\mu_1 = -1$
- Neimark-Sacker (torus): $\mu_{1,2}=e^{\pm i\theta},\ 0<\theta<\pi$

• Fold bifurcation of cycles: $\mu_1 = 1 \ (m_c = 1)$

If $b \neq 0$ then the restriction of the Poincaré map to its $W^c(\alpha)$ is locally topologically equivalent to $\xi \mapsto \tilde{\xi} = \xi + \beta(\alpha) + a\xi^2$.



• Period-doubling: $\mu_1 = -1 \ (m_c = 1)$

If $c \neq 0$ then the restriction of the Poincaré map to its $W^c(\alpha)$ is locally topologically equivalent to $\xi \mapsto \tilde{\xi} = -(1 + \beta(\alpha))\xi + c\xi^3$.

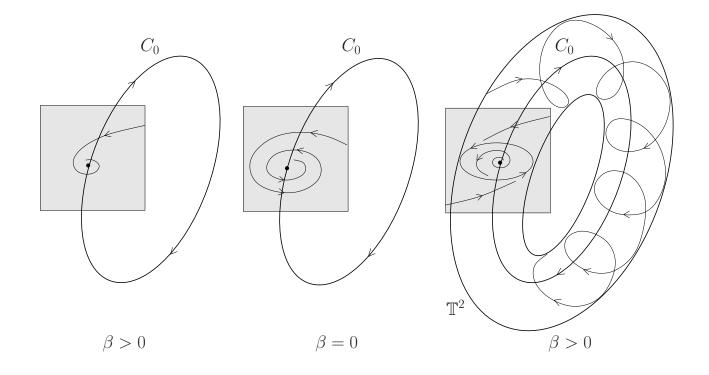


• Torus: $\mu_{1,2} = e^{\pm i\theta} \ (m_c = 2)$

If $d(0) \neq 0$ and $e^{ik\theta} \neq 1$ for k = 1, 2, 3, 4, then the restriction of the Poincaré map to its $W^c(\alpha)$ is locally smoothly equivalent to

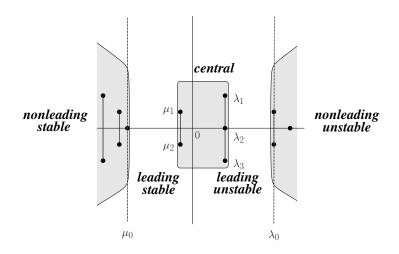
$$\begin{pmatrix} \rho \\ \varphi \end{pmatrix} \mapsto \begin{pmatrix} \rho(1+\beta(\alpha)+d(\alpha)\rho^2) \\ \varphi+\theta(\alpha) \end{pmatrix} + \begin{pmatrix} R(\rho,\varphi,\alpha) \\ S(\rho,\varphi,\alpha) \end{pmatrix},$$

where $R = O(\rho^4)$, $S = O(\rho^2)$



Codim1 bifurcations of homoclinic orbits to equilibria

• Homoclinic orbit to a hyperbolic equilibrium:

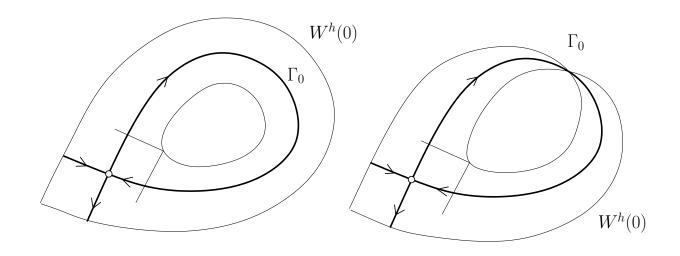


Definition 3 Saddle quantity $\sigma = \Re(\mu_1) + \Re(\lambda_1)$.

Theorem 5 (Homoclinic Center Manifold) Generically, there exists an invariant finitely-smooth manifold $W^h(\alpha)$ that is tangent to the central eigenspace at the homoclinic bifurcation.

Saddle homoclinic orbit: $\sigma = \mu_1 + \lambda_1$

Assume that Γ_0 approaches X_0 along the leading eigenvectors.



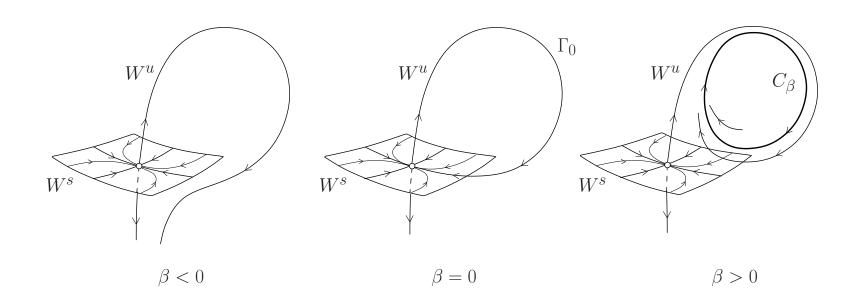
The Poincaré map near Γ_0 :

$$\xi \mapsto \tilde{\xi} = \beta + A\xi^{-\frac{\mu_1}{\lambda_1}} + \dots$$

where generically $A \neq 0$, so that a unique hyperbolic cycle bifurcates from Γ_0 (stable in W^h if $\sigma < 0$ and unstable in W^h if $\sigma > 0$).

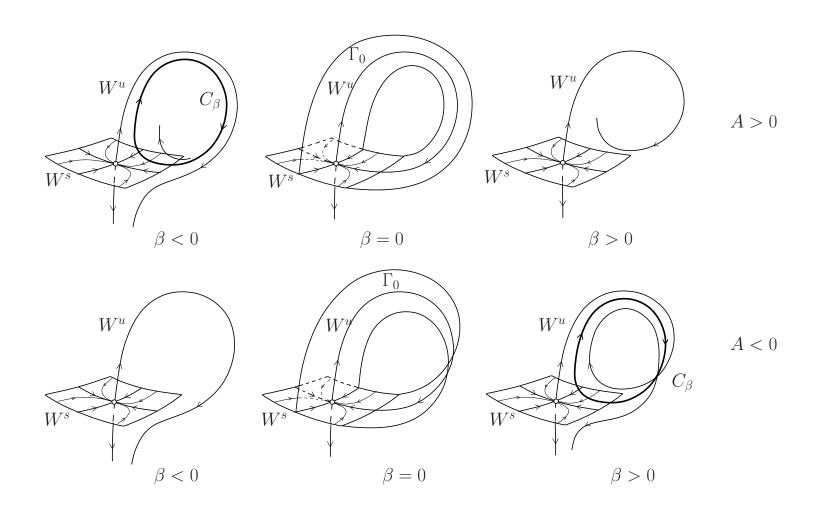
3D saddle homoclinic bifurcation with $\sigma < 0$:

Assume that $\mu_2 < \mu_1 < 0 < \lambda_1$ (otherwise reverse time: $t \mapsto -t$).



3D saddle homoclinic bifurcation with $\sigma > 0$:

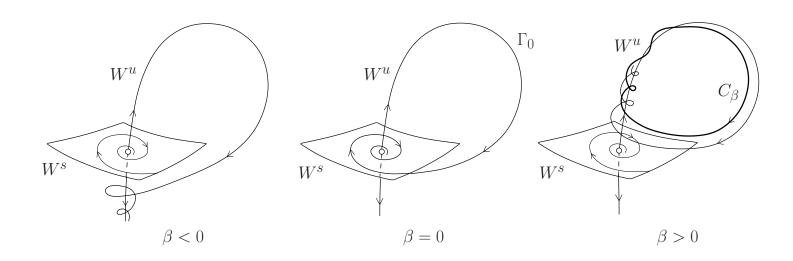
Assume that $\mu_2 < \mu_1 < 0 < \lambda_1$ (otherwise reverse time: $t \mapsto -t$).



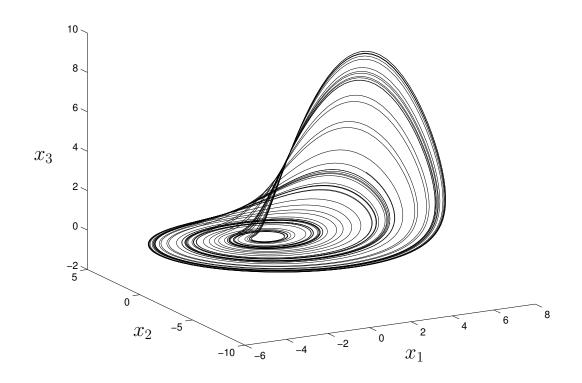
Saddle-focus homoclinic orbit: $\sigma = \Re(\mu_1) + \lambda_1$

3D saddle-focus homoclinic bifurcation with $\sigma < 0$:

Assume that $\Re(\mu_2) = \Re(\mu_1) < 0 < \lambda_1$ (otherwise reverse time: $t \mapsto -t$).



3D saddle-focus homoclinic bifurcation with $\sigma > 0$:

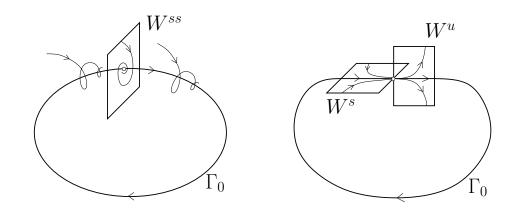


CHAOTIC INVARIANT SET

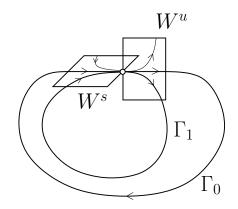
Focus-focus homoclinic orbit: $\sigma = \Re(\mu_1) + \Re(\lambda_1)$

CHAOTIC INVARIANT SET

• Homoclinic orbit(s) to a non-hyperbolic equilibrium

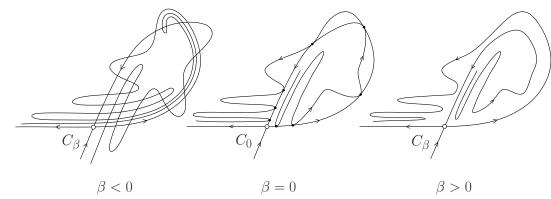


One homoclinic orbit: \Rightarrow a unique hyperbolic cycle

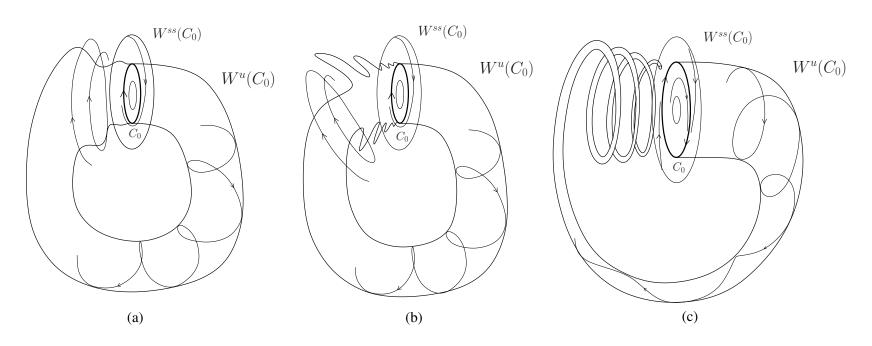


Several homoclinic orbits: ⇒ CHAOTIC INVARIANT SET

• Some other cases



Homoclinic tangency of a hyperbolic cycle: ⇒ CHAOS



Homoclinics to nonhyperbolic cycle: ⇒ torus/CHAOS/cycle

Example: Bifurcations in a food chain model

• The tri-trophic food chain model by Hogeweg & Hesper (1978):

$$\begin{cases} \dot{x}_1 = rx_1 \left(1 - \frac{x_1}{K} \right) - \frac{a_1 x_1 x_2}{1 + b_1 x_1}, \\ \dot{x}_2 = e_1 \frac{a_1 x_1 x_2}{1 + b_1 x_1} - \frac{a_2 x_2 x_3}{1 + b_2 x_2} - d_1 x_2, \\ \dot{x}_3 = e_2 \frac{a_2 x_2 x_3}{1 + b_2 x_2} - d_2 x_3, \end{cases}$$

where

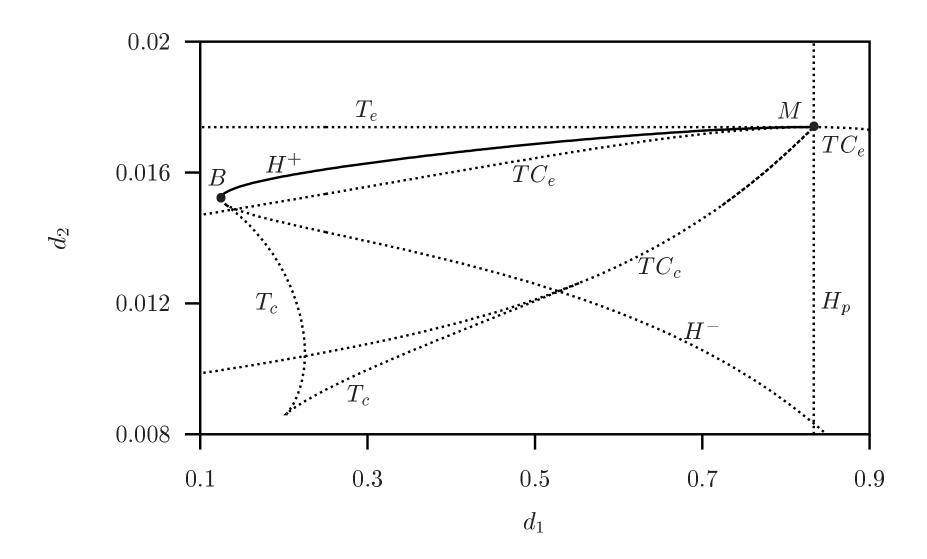
 x_1 prey biomass

 x_2 predator biomass

 x_3 super-predator biomass

Yu.A. Kuznetsov, O. De Feo, and S. Rinaldi (2001), Belyakov homoclinic bifurcations in a tritrophic food chain model, SIAM J. Appl. Math. 62, 462–487

Local bifurcations



Local and key global bifurcations

