UNIVERSITEIT TWENTE.

Bifurcations of Maps

 Hil MeijerApplied Analysis, University of Twente, Netherlands

Overview

General introduction
Local Codimension 1 Bifurcations
Period-Doubling Route to chaos
Invariant Manifolds and Homoclinic tangencies
Generalized Hénon Map
Bifurcations of Invariant curves
Phase-locking
Bifurcations of Invariant Curves
Codim 2 Bifurcations
1-Dimensional codim 2 bifurcations
Strong Resonances 1:1 \& 1:2

Overview

Part 1

- Setting and stability
- Local codimension 1 bifurcations
- Invariant manifolds and homoclinic bifurcations
- Chaos and Lyapunov exponents

Part 2

- Bifurcations on and of invariant curves
- Codim 2 bifurcations as organizing centers

Maps: Examples

- Models of discrete-time nature; Logistic map, Population biology with off-spring only once per year, Models from economy/game theory with policy adaptation every round.
- Derived from ODE's: Periodically forced ODE's, Poincaré maps or with an Euler-step, bipedal walkers

Setting

Consider a map with parameter α

$$
x \mapsto f(x, \alpha) \in \mathbb{R}^{n}, \quad x \in \mathbb{R}^{n}, \quad \alpha \in \mathbb{R}^{m}
$$

Orbit: Sequence of points defined by iterating initial point

$$
x_{0}, x_{1}=f\left(x_{0}\right), x_{2}=f\left(f\left(x_{0}\right)\right), \ldots, x_{k}:=f^{k}\left(x_{0}\right), \ldots
$$

Fixed point: $f\left(x_{0}, \alpha_{0}\right)^{k}-x_{0}=0$.
Minimal period k; fixed point if $k=1$ or cycle if $k>1$.
We study dynamics near a fixed point as the parameter α varies and set w.l.o.g. $k=1$. We will mostly ignore phenomena induced by non-invertibility.

Stability of fixed point (cycle)

Consider evolution of a small perturbation $x_{n}=x_{0}+u_{n}$:

$$
u_{n+1}=f\left(x_{n}\right)^{k}-x_{0}=\underbrace{f\left(x_{0}\right)^{k}-x_{0}}_{=0}+A u_{n}+\underbrace{O\left(\left\|u_{n}\right\|^{2}\right)}_{\text {ignore }},
$$

where $A=f_{x}\left(x_{0}, \alpha_{0}\right)^{k}$. So: Near a fixed point the dynamics is given by the linearized mapping

$$
u \mapsto A u .
$$

The fixed point has multipliers (eigenvalues of A)

$$
\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\}=\sigma(A)
$$

The fixed point is stable if $\forall i:\left|\mu_{i}\right|<1$.

Some Linear Phase Portraits

Overview

General introduction

Local Codimension 1 Bifurcations
Period-Doubling Route to chaos
Invariant Manifolds and Homoclinic tangencies
Generalized Hénon Map
Bifurcations of Invariant curves
Phase-locking
Bifurcations of Invariant Curves
Codim 2 Bifurcations
1-Dimensional codim 2 bifurcations
Strong Resonances 1:1 \& 1:2

Occurence of codim 1 bifurcations

Follow a family of fixed points with the defining system

$$
F:=f(x, \alpha)^{k}-x
$$

The stability of a fixed point may change as a multiplier crosses the unit circle when a parameter is varied:

Limit Point	Period-Doubling	Neimark-Sacker

Limit Point Bifurcation

The fixed point has a simple multiplier $\mu_{1}=1$ and no other multipliers on the unit circle. The simplest example is

$$
\xi \mapsto \alpha+\xi+a \xi^{2},
$$

where $a \neq 0$.
Other names: saddle-node or fold bifurcation.

The Implicit Function Theorem guarantees the existence of a branch of fixed points $x(\alpha)$ of $f(x, \alpha)^{k}-x=0$ as long as $1 \notin \sigma(A)$.

Limit Point Bifurcation

As the parameter crosses the critical value, two fixed points, one stable, one unstable, coalesce and disappear.

$$
\alpha<\alpha_{0}
$$

Limit Point Bifurcation

As the parameter crosses the critical value, two fixed points, one stable, one unstable, coalesce and disappear.

$$
\alpha=\alpha_{0}
$$

Limit Point Bifurcation

As the parameter crosses the critical value, two fixed points, one stable, one unstable, coalesce and disappear.

$$
\alpha>\alpha_{0}
$$

Limit Point Bifurcation

As the parameter crosses the critical value, two fixed points, one stable, one unstable, coalesce and disappear.

Period-Doubling Bifurcation

The fixed point has a simple multiplier $\lambda_{1}=-1$ and no other multipliers on the unit circle. The simplest example is

$$
\xi \mapsto-\xi(1-\alpha)+b \xi^{3},
$$

where $b \neq 0$. Other names: flip bifurcation.
Branches of cycles; $\xi^{*}=0$ and $\xi^{*}= \pm \sqrt{\frac{\alpha}{b}}$

Period-Doubling Bifurcation

When the parameter crosses the critical value, a cycle of period 2 bifurcates from the fixed point. 2-cycle stable if $b>0$.

Neimark-Sacker bifurcation

Suppose for a critical value of the parameter $\alpha=\alpha_{0}$

- the fixed point has critical multipliers $\mu_{1,2}=e^{ \pm i \theta_{0}}$ and no other eigenvalues on the unit circle.
- $e^{i q \theta_{0}} \neq 1$, for $q=1,2,3,4$, i.e. no strong resonances.

The simplest example is given by

$$
z \mapsto z e^{i \theta_{0}}\left(1+\alpha+d|z|^{2}\right)
$$

where $z=x+i y=\rho e^{i \phi}$ is a complex variable and d a complex constant.

Neimark-Sacker bifurcation

If the first Lyapunov coefficient $c:=\operatorname{Re}(d) \neq 0$, then a unique closed invariant curve appears around the fixed point when the parameter crosses the critical value.
Supercritical case $c<0$: the invariant curve is stable.

Neimark-Sacker bifurcation

Remarks:

- Subcritical case c>0: an unstable invariant curve disappears as the fixed point becomes unstable when α increases.
- The dynamics on the invariant curve may be a rigid rotation $\phi \mapsto \phi+\theta$ if the rotation number $\theta /(2 \pi)$ is (sufficiently) irrational.
- If $\theta /(2 \pi)$ is close to rational, the dynamics may be more complicated, see tomorrow.
- Other names used in literature: Hopf (for maps), secondary Hopf, Torus bifurcation

Period-doubling bifurcation revisited

Cobweb: Plot graph and iterate by plotting $(x, x) \rightarrow(x, f(x)) \rightarrow(f(x), f(x))$.

$\beta<0$

$\beta=0$

$\beta>0$

Logistic Map

Mapping the unit-interval $[0,1]$ to itself with parameter $0<r<4$

$$
x \mapsto f(x, r):=r x(1-x)
$$

$r=2.5$

Logistic Map: Period-Doublings

Second and Fourth iterate shown in yellow. As r increases, see \rightarrow Movie .

Lyapunov exponents λ

Measure of rate of separation of orbits near $\left\{x_{k}\right\}$
For every iterate consider $f\left(x_{k}+\delta \vec{v}\right)=x_{k+1}+\delta D f\left(x_{k}\right) \vec{v}+\ldots$
Define growth rate $r_{k}=\left\|D f\left(x_{k}\right) \vec{v}\right\|$

$$
\lambda(\vec{v}):=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} r_{k}
$$

- Choose large N so that average converges.
- There are n exponents for n-dimensional systems.
- $\lambda<0$ indicates stability, $\lambda=0$ corresponds to a neutral direction (higher-dimensions), $\lambda>0$ indicates chaos.

Logistic Map: Positive exponents suggest chaos.

Coordinates of attractor

Lyapunov exponent

r_{2}	3	r_{16}	3.5644072	
r_{4}	3.44948974	r_{32}	3.5687594	
r_{8}	3.54409035	r_{64}	3.5696916	$r_{\infty} \approx 3.57$

Overview

General introduction

Local Codimension 1 Bifurcations
Period-Doubling Route to chaos
Invariant Manifolds and Homoclinic tangencies
Generalized Hénon Map
Bifurcations of Invariant curves
Phase-locking
Bifurcations of Invariant Curves
Codim 2 Bifurcations
1-Dimensional codim 2 bifurcations
Strong Resonances 1:1 \& 1:2

(Un)Stable Manifolds

Consider a saddle fixed point x_{0} with
$\underbrace{\left|\mu_{i}\right|<\cdots<\left|\mu_{i}\right|}_{W^{s}}<1<\underbrace{\left|\mu_{i+1}\right|<\cdots<\left|\mu_{n}\right|}_{W^{u}}$.
A point x in the stable manifold W^{s} satisfies

$$
\lim _{j \rightarrow \infty} f(x)^{j}=x_{0} .
$$

A point x in the unstable manifold W^{u} (if defined) satisfies

$$
\lim _{j \rightarrow \infty} f(x)^{-j}=x_{0} .
$$

The (un)stable manifold near the fixed point can be approximated by the (un)stable eigenspace of the linearization.

Connecting Orbits

Consider stable and unstable manifolds of saddles $x^{ \pm}$.

A heteroclinic orbit $\left\{x_{i}\right\}$ satisfies $\lim _{j \rightarrow-\infty} x_{j}=x^{-}$and $\lim _{j \rightarrow \infty} x_{j}=x^{+}$. For a homoclinic orbit we have $x^{-}=x^{+}$.

Homoclinic orbits come in pairs

A transversal intersection of manifolds persists for small parameter variations.
A transversal homoclinic orbit allows the construction of Smale's Horseshoe \Longrightarrow Chaotic dynamics

Global bifurcation: Homoclinic tangency

A transversal intersection (dis)appears through a primary tangency of the stable and unstable manifolds.

Let's turn to the dynamics near a homoclinic tangency bifurcation curve.

Generalized Hénon Map (GHM): Setting

(A) Map f_{0} has a saddle fixed point O with eigenvalues γ, λ, such that $0<|\lambda|<1<|\gamma|$;
(B) the saddle quantity $\sigma \equiv|\lambda \gamma|=1$;
(C) the invariant manifolds $W^{u}(O)$ and $W^{s}(O)$ have a quadratic tangency at points of a homoclinic orbit Γ.

GHM:Domains of definition

Consider a $\left(n_{0}+k\right)$-round orbit:
Start at σ_{k}^{0} in Π^{+}ending at σ_{k}^{1} in Π^{-}after k iterations of f_{0}. Next iterate n_{0}-times along the homoclinic orbit to come back at Π^{+}.

GHM and bifurcations of fixed points

Approximate return map near σ_{k}^{0} defined by

$$
\binom{x}{y} \mapsto\binom{y}{\alpha_{1}-\alpha_{2} x-y^{2}+R x y},
$$

where α is a parameter close to the homoclinic tangency bifurcation curve $\mu_{1}=0$ in the original map f.

- LP bifurcation for $\alpha_{1}=\frac{\left(\alpha_{2}+1\right)^{2}}{4(R-1)}$
- PD bifurcation for $\alpha_{1}=\frac{1}{4}\left(\alpha_{2}+1\right)^{2}(3-R)$
- NS bifurcation for $\alpha_{1}=\frac{\left(\alpha_{2}-1\right)\left(\alpha_{2}-1+2 R\right)}{R^{2}}$
- Open regions with stable fixed points.

GHM and Newhouse regions

Away from the homoclinic tangency bifurcation curve $\mu_{1}=0$, and for saddle quantity $\sigma<1$, there is a parameter set with infinitely many stable fixed points with high period.

(a)

(b)

Overview

General introduction

Local Codimension 1 Bifurcations
Period-Doubling Route to chaos
Invariant Manifolds and Homoclinic tangencies Generalized Hénon Map

Bifurcations of Invariant curves
Phase-locking
Bifurcations of Invariant Curves
Codim 2 Bifurcations
1-Dimensional codim 2 bifurcations
Strong Resonances 1:1 \& 1:2

Neimark-Sacker in Delayed Logistic Map

$$
F:=\binom{x}{y} \mapsto\binom{r x(1-y)}{x}
$$

Fixed Point at $x^{*}=y^{*}=\frac{r-1}{r}$.

$$
D F=\left(\begin{array}{cc}
r(1-y) & -r x \\
1 & 0
\end{array}\right) \Longrightarrow \operatorname{det}\left(D F\left(x^{*}, y^{*}\right)\right)=r x^{*}=r-1
$$

So there is a Neimark-Sacker bifurcation at $r=2$. See

Model accounting for Phase-Locking

Suppose rotation number $\rho \approx 2 \pi p / q$. Include higher order terms in model to describe period q cycles
$z \mapsto z\left(1+\beta_{1}\right) e^{i \theta(\beta)}+\left(\sum_{m=1}^{\lfloor(q-1) / 2\rfloor} A_{m}(\beta) z|z|^{2 m}\right)+B(\beta) z^{q-1}+\ldots$
Only really higher order if $q \geq 5$.
Model has the following bifurcations

- Neimark-Sacker bifurcation for $\beta_{1}=0$
- Saddle-Node of period q: $\beta_{2}=C_{1} \beta_{1} \pm C_{2} \beta_{1}^{(q-2) / 2}$ for some constants $C_{1,2}$ depending on A_{m}, B.

Resonance tongue from NS-bifurcation

As parameters vary through the tongue, a saddle and a node cycle of period q appear on the invariant curve.

Resonance Tongues in 3D Map

Adaptive Control Map (Frouzakis et al. IJBC 1991)

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \mapsto\left(\begin{array}{c}
y \\
b x+k+y z \\
z-\frac{k y}{c+y^{2}}(b x+k+y z-1)
\end{array}\right)
$$

Resonance tongues emerge from the Neimark-Sacker bifurcation at $b=-\frac{c+1}{c+2}$. Fix $c=0.1$.

Bifurcations of Invariant Curves 1

Quasi-periodic Saddle-Node bifurcation

Quasi-periodic Torus bifurcation

Bifurcations of Invariant Curves 2

Quasi-periodic Doubling bifurcation (two options)

Overview

General introduction

Local Codimension 1 Bifurcations
Period-Doubling Route to chaos
Invariant Manifolds and Homoclinic tangencies
Generalized Hénon Map
Bifurcations of Invariant curves
Phase-locking
Bifurcations of Invariant Curves
Codim 2 Bifurcations
1-Dimensional codim 2 bifurcations
Strong Resonances 1:1 \& 1:2

Why bother about codim 2 bifurcations?

- Numerical continuation yields bifurcation curves depending on two parameters.
- Bifurcation curves divide the parameter plane into several regions with qualitatively different dynamics. Such local and global bifurcations curves come together at codim 2 bifurcation points acting as organizing centers.
- For codim 2 bifurcations the normal forms are known, but unfoldings differ depending on critical coefficients.
- The idea is to come to a consistent picture of phase portraits when going around the codim 2 point in the parameter plane.

Recap codim 1 bifurcations

The simplest model systems are so-called normal forms

$$
\begin{array}{lll}
\mathrm{LP}: & \xi \mapsto & \alpha+x+a \xi^{2}, \\
\mathrm{PD}: & \xi \mapsto & -\xi(1-\alpha)+b \xi^{3}, \\
\mathrm{NS}: & z \mapsto & z e^{i \theta_{0}}\left(1+\alpha+d|z|^{2}\right),
\end{array}
$$

with $a, b, \operatorname{Re}(d) \neq 0$ and $q \theta_{0} \neq 2 \pi$ for $q=1,2,3,4$.
Codim 2 bifurcations appear through additional multipliers or degeneracies.

List of local codim 2 bifurcations

Case degeneracy or additional multipliers

(1)	$\mu_{1}=1, a=0$	cusp
(2)	$\mu_{1}=-1, b=0$	generalized flip
(3)	$\mu_{1,2}=e^{ \pm i \theta_{0}}, c=\operatorname{Re}(d)=0$	Chenciner
(4)	$\mu_{1}=\mu_{2}=1$	$1: 1$ resonance
(5)	$\mu_{1}=\mu_{2}=-1$	$1: 2$ resonance
(6)	$\mu_{1,2}=e^{ \pm i \theta_{0}}, \theta_{0}=\frac{2 \pi}{3}$	$1: 3$ resonance
(7)	$\mu_{1,2}=e^{ \pm i \theta_{0}}, \theta_{0}=\frac{\pi}{2}$	$1: 4$ resonance
(8)	$\mu_{1}=1, \mu_{2}=-1$	fold-flip
(9)	$\mu_{1}=1, \mu_{2,3}=e^{ \pm i \theta_{0}}$	fold-NS
(10)	$\mu_{1}=-1, \mu_{2,3}=e^{ \pm i \theta_{0}}$	flip-NS
(11)	$\mu_{1,2}=e^{ \pm i \theta_{1}}, \mu_{3,4}=e^{ \pm i \theta_{2}}$	double NS

Cusp: normal form and unfolding

When the quadratic coefficient vanishes along an LP-bifurcation curve, the following normal form characterizes nearby dynamics

$$
\xi \mapsto \beta_{1}+\xi+\beta_{2} \xi^{2}+d \xi^{3}+\cdots, \quad d \neq 0
$$

Degenerate Period-Doubling

The normal form is given by

$$
w \mapsto G(w)=-w\left(1+\beta_{1}\right)+\beta_{2} w^{3}+e w^{5}+\cdots, \quad e \neq 0
$$

Strong resonances

If $q \theta_{0}=2 \pi, \quad q=1,2,3,4$ then a Neimark-Sacker bifurcation becomes a strong resonance.

- The critical normal form for the $1: 1$ resonance is:

$$
f:\binom{x}{y} \mapsto\binom{x+y}{y+a_{1} x^{2}+b_{1} x y}+\cdots
$$

- The critical normal form for the 1:2 resonance is:

$$
f:=\binom{x}{y} \mapsto\binom{-x+y}{-y+c_{1} x^{3}+d_{1} x^{2} y}+\cdots
$$

Observation: composition $D f^{-1}(0) \circ f$ is close to the identity.

Vector field Approximation

Theorem (Takens,Neimark): Suppose $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a diffeomorphism and $D \Phi(0)$ has all eigenvalues on the unit circle. Denote by S the semi-simple part of $D \Phi(0)$. Then there exists a diffeomorphism Ψ and a vector field X such that

$$
\Psi \circ \Phi \circ \Psi^{-1}=\phi_{X}(t=1) \circ S
$$

in the sense of Taylor series.
Proof: Global Analysis of Dynamical Systems: Festschrift dedicated to Floris Takens for his 60th birthday. Eds. H.W Broer, B. Krauskopf G. Vegter, see Thm 4.6 p20. Remark:
$-\Phi$ is the time-1 map of the flow of the vector field X.

- parameters can be included.

1:1 Resonance Approximately Unfolded

The unfolding of the approximating vector field involves Saddle-node, Hopf and a global homoclinic bifurcation.

1:1 Resonance; Map intricacies

Perturbed 1:1 Resonance Normal Form

In practice, you may observe the following diagrams:

Bifurcation curves

Lyapunov exponents

Note phase-locking (green/yellow), chaos (red), invariant curve (magenta)

1:2 Resonance: normal form

The normal form G (including parameters) is:

$$
\binom{x}{y} \mapsto\binom{-x+y}{\beta_{1}+\left(-1+\beta_{2}\right) y+c_{1} x^{3}+d_{1} x^{2} y}+\cdots
$$

Non-degenerate if $c_{1} \neq 0$ and $d_{1}+c_{1} \neq 0$.
If $c_{1}<0$ a codim 1 branch of Neimark-Sacker bifurcation of double period emanates.

Asymptotic expression of the new branch

$$
H^{(2)}:\left(x^{2}, y, \beta_{1}, \beta_{2}\right)=\left(-\frac{1}{c_{1}}, 0,1,\left(2+\frac{d_{1}}{c_{2}}\right)\right) \varepsilon
$$

Unfolding $c_{1}>0$

Only NS and PD branches.

(1)

Unfolding $c_{1}<0$:

New codim 1 branch $H^{(2)}$ (local bifurcation)

UNIVERSITEIT TWENTE.

Perturbed 1:2 Resonance Normal Form

In practice, you may observe the following diagrams:

Bifurcation curves

Lyapunov exponents

Note periods 1,2 (yellow/orange), phase-locking (green/dark blue), chaos (red), invariant curve (magenta)

