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1. Numerical simulation of DDEs with MATLAB

In this section we show how to approximate solutions DDEs numerically with the
MATLAB function dde23. Explicit Runge-Kutta triples are a standard way to solve the
ODE problem ẋ(t) = f (t, x) on [a, b] with given x(a). They can be extended to solve
DDEs. Indeed, dde23 is closely related to the ODE solver ode23 from the MATLAB ODE
Suite [5], which implements the BS(2,3) triple [1].

A typical call to the function dde23 has the form

sol = dde23(ddefun,lags,history,tspan)

where

ddefun Function handle that evaluates the right side of the differential equation

ẋ(t) = f (x(t− τ0), x(t− τ1), . . . , x(t− τm)).

The function must have the form

dydt = ddefun(t,x,z)

where t corresponds to the current t, x is a column vector that approximates x(t),
and z(:,j) approximates x(t-τj) for delay τj = lags(j). The output is a column
vector corresponding to

f (x(t− τ0), x(t− τ1), . . . , x(t− τm)).

lags Vector of constant delays τ1, . . . , τm.

history Specify history, i.e. the initial solution segment, in one of three ways:

• A function of t such that x = history(t) returns the solution x(t) for t ≤ t0
as a column vector

• A constant column vector, if x(t) is constant

• The solution sol from a previous integration, if this call continues that inte-
gration

tspan Interval of integration from t0=tspan(1)to tf=tspan(end) with t0 < tf.

The structure sol returned by dde23 contains the following fields.

sol.x Mesh selected by dde23

sol.y Approximation to x(t) at the mesh points in sol.x

sol.yp Approximation to ẋ(t) at the mesh points in sol.x

Note that MATLAB uses x as the structure key for the mesh for the independent variable.
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Example

Consider the scalar DDE

ẋ(t) = x(t− 1) (x(t)− 1) , t ≥ 0, (1)

with some initial function

x(t) = φ(t), −1 ≤ t ≤ 0.

We create two files history_ex1.m and ddefun_ex1.m containing the initial function
and the DDE respectively.

% filename: history_ex1.m
function y = history_ex1(t)

y = cos(t);
end

% filename: ddefun_ex1.m
function f = ddefun_ex1(xx)

% (Using notation of DDEBifTool):
% xx(1,1) = x(t), x(1,2) = x(t-lags(1))
f = xx(1,2)*(xx(1,1)-1);

end

In the function history_ex1.m we have set the initial function to φ(t) = φ1(t) = cos(t).
Then the code

tspan=[0;4];
hspan=-1:0.01:0;
lags=1;

% solve the DDE
sol = dde23(@(t,y,Z)ddefun_ex1([y,Z]),lags,@history_ex1,tspan);

% plot solution
plot([hspan, sol.x],[history_ex1(hspan), sol.y])

xlabel('t')
ylabel('x')
ylim([0,1.1])

solves the DDE on the interval 0 ≤ t ≤ 4. Here we use an anonymous function in the
first argument of the function dde23 to put the arguments in the correct form for the
function ddefun, see above. This will also allow us to incorporate parameters, which
we will freuqently do. In Figure 1 we have plotted the solution. In the same figure we
also plotted the solutions for different initial functions φ2(t) = 1− t and φ3(t) = exp(t).
There we see that solutions on the interval 0 ≤ t ≤ 4 coincide. Indeed, if the history
function satisfies φ(0) = 1, then the DDE (1) becomes

ẋ(0) = 0,
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Figure 1: Solutions to the DDE (1). The different history functions φ1(t) = cos(t), φ2(t) =
et and φ3(t) = 1− t result in the same solution for t ≥ 0.

defining an equilibrium. We notice that different initial states φ may be mapped to the
same state xt(·, φ) at some future time t > 0, where xt(·, φ) = xφ(t + ·), · ∈ [−1, 0] is the
history segment of the solution x at time t with initial state φ.
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2. Example with Hopf bifurcation

Consider the model

ẋ(t) = −
(

π
√

3
9

+ µ

)
[x(t− 1) + x(t− 2)]

(
1− x2(t)

)
, (2)

with two delays, see [2] and [4]. The DDE is an idealized form of a model for the
populations of the field vole (Microtus agrestis) [6]. At the critical value µ = 0 there is a
Hopf bifurcation, which we will first find analytically and then we confirm our findings
numerically with dde23.

Analytical derivation of Hopf bifurcation

The linearization of (2) at x = 0 yields

ẋ(t) = −
(

π
√

3
9

+ µ

)
[x(t− 1) + x(t− 2)] .

Substituting x(t) = eλt gives

λ = −
(

π
√

3
9

+ µ

) [
e−λ + e−2λ)

]
, (3)

which, as in ODEs, is called the characteristic equation and λ ∈ C satisfying (3) an
eigenvalue. Let λ(µ) = α(µ) + iω(µ). To prove that at µ = 0 equation (2) undergoes a
Hopf bifurcation we must show that there exists an eigenvalue such that:

• λ(0) = iω(0) = ±iω0, ω0 ∈ R>0, so that α(0) = 0

• α′(0) 6= 0 (the transversality hypothesis)

• the fist Lyapunov coefficient is non-vanishing

The first two conditions will be verified here. The third condition will be treated in
Practicum II.

For equation (3) to have purely imaginary root λ = iω, ω > 0 at µ = 0, it must be that

0 = cos ω + cos 2ω = 2 cos
ω

2
cos

3ω

2
, (4)

9ω =
√

3π(sin ω + sin 2ω) = 2
√

3π cos
ω

2
sin

3ω

2
. (5)

Note that that eigenvalues of real systems come in conjugate pairs, so we can restrict to
the case that ω > 0. If cos ω

2 = 0, then (3) is not satisfied. Let

ωk =
2
3

(π

2
+ kπ

)
, k ∈ Z,
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then equation (4) is satisfied. Substituting into equation (5) yields

9ωk =
√

3π(sin ωk + sin 2ωk),

which gives k = 0,−1. It follows that ω =
π

3
.

We will now show that there are no eigenvalues with positive real part at µ = 0.
Suppose that λ = α + iω, with α, ω ≥ 0. Substituting into equation (3) at µ = 0 and
separating the real and imaginary parts yields the equations

α = − π

3
√

3

(
e−α cos ω + e−2α cos 2ω

)
, (6)

ω =
π

3
√

3

(
e−α sin ω + e−2α sin 2ω

)
. (7)

Since α > 0 the second equation implies that |ω| ≤ 2π
3
√

3
. The first equation yields

− 3
√

3α

π cos ω
= e−α

(
1 +

cos 2ω

cos ω
e−α

)
. (8)

Since
cos 2ω

cos ω
≥ −1, ω ∈ [0,

π

3
]

the right hand side of equation (8) is positive there. It follows that we only have to look
for solutions of equations (6)-(7) for

ω ∈
(

π

3
,

2π

3
√

3

]
.

But
G(ω) := ω− π

3
√

3

(
e−α sin ω + e−2α sin 2ω

)
has a positive derivative for ω ∈ (

π

3
, 2π

3
√

3
], see Appendix A for details. Furthermore,

G(
π

3
) > 0. Hence the characteristic equation (3) has no roots with positive real parts for

µ = 0.
Implicit differentiation of (3) yields

λ′ = −
[
e−λ + e−2λ)

]
+

(
π
√

3
9

+ µ

) [
e−λ + 2e−2λ)

]
λ′,

so that

λ′ = − e−λ + e−2λ

1−
(

π
√

3
9

+ µ

)
[e−λ + 2e−2λ]
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Hence

λ′(0) =
27
√

3π

6π
√

3 + 14π2 + 54
+ i

9
(

6
√

3 + π
)

6π
√

3 + 14π2 + 54
.

Thus α′(0) 6= 0 and the transversality hypothesis is satisfied.
We conclude that the pair of purely imaginary eigenvalues passes form the left half-

plane to the right half-plane as µ changes from negative to positive. The equilibrium
x = 0 loses its stability at µ = 0 and a unique limit cycle bifurcates from it, see Figure 2.

Numerical illustration of Hopf bifurcation

The code in the Listing below generates the plots in Figure 2.

%% Simulation of Hopf bifurcation
%
% Simulation using MATLAB dde23 near a Hopf bifurction in an idealized form
% of a model for the populations of the field vole (Microtus agrestis)
%

%% Differential equations
%
% From: Stirzaker, D
% On a population model
% Mathematical Biosciences, 23(3):329--336, 1975
%
% $$\dot{x}(t)=-\left(\dfrac{\pi\sqrt{3}}{9}+\mu\right)\left[x(t-1)+x(t-2)\...

right]\left(1-x^{2}(t)\right)$$
%

%% Simulation of Hopf bifurcation
% Set default text interpreter for axis to LaTeX
set(groot, 'defaultTextInterpreter', 'LaTeX');
% Define the field vole model
sys_rhs = @(xx,mu) -(pi*sqrt(3)/9+mu)*(xx(1,2)+xx(1,3))*(1-xx(1,1)^2);
% Just before the hopf bifurcation
mu=-0.1;
history1=-0.99;
sol1 = dde23(@(t,y,Z)sys_rhs([y,Z],mu),[1 2],history1,[0 100]);

% time series plot
figure(1); clf
subplot(3,2,1)
plot(sol1.x,sol1.y)
title('$\mu=-0.1$')
xlabel('$t$')
ylabel('$x$')

% plot in phase-plane

7



subplot(3,2,2)
plot(sol1.y,sol1.yp)
title('$\mu=-0.1$')
xlabel('$x$')
ylabel('$\dot{x}$')

% at critical value
mu=0;
history1=-0.99;
sol1 = dde23(@(t,y,Z)sys_rhs([y,Z],mu),[1 2],history1,[0 100]);

% time series plot
subplot(3,2,3)
plot(sol1.x,sol1.y)
title('$\mu=0$')
xlabel('$t$')
ylabel('$x$')

% plot in phase-plane
subplot(3,2,4)
plot(sol1.y,sol1.yp)
title('$\mu=0$')
xlabel('$x$')
ylabel('$\dot x$')

% just after the hopf bifurcation
mu=0.1;
options = ddeset('MaxStep',0.1);
sol1 = dde23(@(t,y,Z)sys_rhs([y,Z],mu),[1 2],-0.99,[0 100],options);
sol2 = dde23(@(t,y,Z)sys_rhs([y,Z],mu),[1 2], 0.01,[0 100],options);

% time series plot
subplot(3,2,5)
plot(sol1.x,sol1.y)
hold on
plot(sol2.x,sol2.y)
title('$\mu=0.1$')
xlabel('$t$')
ylabel('$x$')

% plot in phase-plane
subplot(3,2,6)
plot(sol1.y,sol1.yp)
hold on
plot(sol2.y,sol2.yp)
title('$\mu=0.1$')
xlabel('$x$')
ylabel('$\dot x$')
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Figure 2: Simulation using dde23 near a Hopf bifurcation in the field vole model (2).
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3. Exercise

In biology one of the earliest mathematical models involving time lags is due to Hutchin-
son [3]. He considered a population of a single species obeying a logistic growth law
with a constant growth rate r modified by a maximum population factor evaluated at an
earlier time:

dN(t)
dt

= r [1− N(t− T)/K] N(t), r, T > 0. (9)

Here K is the maximum population size that can be sustained. Using the substitution

t = Ts, x(s) =
N(Ts)− K

K
,

then (9) becomes
dx(s)

ds
= − (rT) x(s− 1) [1 + x(s)] ,

which we rewrite as
ẋ(t) =

(
−π

2
+ µ

)
x(t− 1) [1 + x(t)] . (10)

1. Show that the linearization of (10) at the steady state x(t) = 0 has two imaginary
eigenvalues at µ = 0. Hint: Use the substitution x(t) = eλt. This leads to the
characteristic equation

λ + (
π

2
− µ)e−λ = 0. (11)

2. Show that the characteristic equation (11) for µ = 0 has no roots with positive real
parts.

3. Verify the transversality condition

Re
dλ

dµ

∣∣∣∣
µ=0
6= 0.

4. Create similar images as in Figure 2 for the DDE (10) with dde23.
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A. Appendix

The following notes are due to Sebastiaan Janssens1. Consider G on the interval [ω1, ω2]
with ω1 < ω2 as in the text. Differentiation gives

G′(ω) = 1− π

3
√

3
e−α cos ω

(
1 + 2e−α cos 2ω

cos ω

)
.

We note that cos ω > 0 and cos 2ω
cos ω ≤ −1 on [ω1, ω2]. This implies that

G′(ω) ≥ 1− π

3
√

3
e−α(1− 2e−α) cos ω on [ω1, ω2].

We also note that e−α(1− 2e−α) ≤ 1
8 for α ≥ 0. Together, this gives the lower bound

G′(ω) ≥ 1− π
√

3
144

> 0 on [ω1, ω2]

which is actually uniform in α > 0.

1https://sebastiaanjanssens.nl
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