Universiteit Utrecht Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration 2006-Extra exercises

- 1. Let (X, \mathcal{B}, μ) be a probability space, i.e. $\mu(X) = 1$. Let $f: X \to [0, 1)$ be a measurable function such that $\mu\left(f^{-1}([\frac{k}{2^n}, \frac{k+1}{2^n}))\right) = \frac{1}{2^n}$ for $n \ge 1$ and $k = 0, 1, \dots, 2^n 1$. Show that $\int_X f^2 d\mu = \frac{1}{3}$.
- 2. Let (X, \mathcal{B}, μ) be a measure space. Suppose $f \in L^1(\mu)$ is strictly positive. Prove that (X, \mathcal{B}, μ) is σ -finite.
- 3. Let (X, \mathcal{A}, μ) be a measure space. Let $f_n, f \in \mathcal{L}^p(\mu)$ be such that $f = \mathcal{L}^p(\mu) \lim_{n \to \infty} f_n$. Prove that for every $\epsilon > 0$, one has

$$\lim_{n \to \infty} \mu(\{x : |f_n(x) - f(x)| \ge \epsilon\}) = 0.$$

4. Let (E, \mathcal{B}, ν) be a measure space, and $h : E \to \mathbb{R}$ a non-negative measurable function. Define a measure μ on (E, \mathcal{B}) by $\mu(A) = \int_A h d\nu$ for $A \in \mathcal{B}$. Show that for every non-negative measurable function $F : E \to \mathbb{R}$ one has

$$\int_E F \, d\mu = \int_E Fh \, d\nu.$$

Conclude that the result is still true for $F \in \mathcal{L}^1(\mu)$ which is not necessarily non-negative.

- 5. Let $E = \{(x, y) : 0 < x < \infty, 0 < y < 1\}$. We consider on E the restriction of the product Borel σ -algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f : E \to \mathbb{R}$ be given by $f(x, y) = y \sin x e^{-xy}$.
 - (a) Show that f is $\lambda \times \lambda$ integrable on E.
 - (b) Applying Fubini's Theorem to the function f, show that

$$\int_0^\infty \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right) dx = \frac{1}{2} \log 2.$$