Measure and Integration 2006-Extra exercises

1. Let (X, \mathcal{B}, μ) be a probability space, i.e. $\mu(X)=1$. Let $f: X \rightarrow[0,1)$ be a measurable function such that $\mu\left(f^{-1}\left(\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right)=\frac{1}{2^{n}}\right.$ for $n \geq 1$ and $k=0,1, \cdots, 2^{n}-1$. Show that $\int_{X} f^{2} d \mu=\frac{1}{3}$.
2. Let (X, \mathcal{B}, μ) be a measure space. Suppose $f \in L^{1}(\mu)$ is strictly positive. Prove that (X, \mathcal{B}, μ) is σ-finite.
3. Let (X, \mathcal{A}, μ) be a measure space. Let $f_{n}, f \in \mathcal{L}^{p}(\mu)$ be such that $f=\mathcal{L}^{p}(\mu)-$ $\lim _{n \rightarrow \infty} f_{n}$. Prove that for every $\epsilon>0$, one has

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0
$$

4. Let (E, \mathcal{B}, ν) be a measure space, and $h: E \rightarrow \mathbb{R}$ a non-negative measurable function. Define a measure μ on (E, \mathcal{B}) by $\mu(A)=\int_{A} h d \nu$ for $A \in \mathcal{B}$. Show that for every non-negative measurable function $F: E \rightarrow \mathbb{R}$ one has

$$
\int_{E} F d \mu=\int_{E} F h d \nu .
$$

Conclude that the result is still true for $F \in \mathcal{L}^{1}(\mu)$ which is not necessarily nonnegative.
5. Let $E=\{(x, y): 0<x<\infty, 0<y<1\}$. We consider on E the restriction of the product Borel σ-algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f: E \rightarrow \mathbb{R}$ be given by $f(x, y)=y \sin x e^{-x y}$.
(a) Show that f is $\lambda \times \lambda$ integrable on E.
(b) Applying Fubini's Theorem to the function f, show that

$$
\int_{0}^{\infty} \frac{\sin x}{x}\left(\frac{1-e^{-x}}{x}-e^{-x}\right) d x=\frac{1}{2} \log 2 .
$$

