## Measure and Integration extra problems

1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel $\sigma$-algebra over $\mathbb{R}$ and $\lambda$ is Lebesgue measure on $\mathcal{B}(\mathbb{R})$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ 2^{-k} & \text { if } x \in[k, k+1), k \in \mathbb{Z}, k \geq 0\end{cases}
$$

(a) Show that $f$ is measurable, i.e. $f^{-1}(B) \in \mathcal{B}(\mathbb{R})$ for all $B \in \mathcal{B}(\mathbb{R})$.
(b) Determine the values of $\lambda(\{f>1\}), \lambda(\{f<1\}$ and $\lambda(\{1 / 4 \leq f<1\}$.
2. Let $(X, \mathcal{B}, \mu)$ be a measure space, and $\left(A_{n}\right)_{n} \subset \mathcal{B}$ such that $\mu\left(A_{n} \cap A_{m}\right)=0$ for $m \neq n$. Show that $\mu\left(\bigcup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right)$.
3. Let $(X, \mathcal{B}, \nu)$ be a measure space, and suppose $X=\bigcup_{n=1}^{\infty} E_{n}$, where $\left\{E_{n}\right\}$ is a collection of pairwise disjoint measurable sets such that $\nu\left(E_{n}\right)<\infty$ for all $n \geq 1$. Define $\mu$ on $\mathcal{B}$ by $\mu(B)=\sum_{n=1}^{\infty} 2^{-n} \nu\left(B \cap E_{n}\right) /\left(\nu\left(E_{n}\right)+1\right)$.
(a) Prove that $\mu$ is a finite measure on $(X, \mathcal{B})$.
(b) Let $B \in \mathcal{B}$. Prove that $\mu(B)=0$ if and only if $\nu(B)=0$.
4. Let $(E, \mathcal{B}, \mu)$ be a measure space, and $\overline{\mathcal{B}}^{\mu}$ be the completion of the $\sigma$-algebra $\mathcal{B}$ with respect to the measure $\mu$ (see exercise 4.13, p.29). We denote by $\bar{\mu}$ the extension of the measure $\mu$ to the $\sigma$-algebra $\overline{\mathcal{B}}^{\mu}$. Suppose $f: E \rightarrow E$ is a function such that $f^{-1}(B) \in \mathcal{B}$ and $\mu\left(f^{-1}(B)\right)=\mu(B)$ for each $B \in \mathcal{B}$. Show that $f^{-1}(\bar{B}) \in \overline{\mathcal{B}}^{\mu}$ and $\bar{\mu}\left(f^{-1}(\bar{B})\right)=\bar{\mu}(\bar{B})$ for all $\bar{B} \in \overline{\mathcal{B}}^{\mu}$.
5. Let $X$ be a set, and $\mathcal{C} \subseteq \mathcal{P}(X)$. Consider $\sigma(\mathcal{C})$, the smallest $\sigma$-algebra over $X$ containing $\mathcal{C}$, and let $\mathcal{D}$ be the collection of sets $A \in \sigma(\mathcal{C})$ with the property that there exists a countable collection $\mathcal{C}_{0} \subseteq \mathcal{C}$ (depending on $A$ ) such that $A \in \sigma\left(\mathcal{C}_{0}\right)$.
(a) Show that $\mathcal{D}$ is a $\sigma$-algebra over $X$.
(b) Show that $\mathcal{D}=\sigma(\mathcal{C})$.
6. Let $E$ be a set, and $\mathcal{A}$ an algebra over $E$, i.e. $\mathcal{A}$ contains the empty set, is closed under complements and finite unions. Let $\mu: \mathcal{A} \rightarrow[0,1]$ be a function satisfying (I) $\mu(E)=1=1-\mu(\emptyset)$,
(II) if $A_{1}, A_{2}, \cdots, \in \mathcal{A}$ are pairwise disjoint and $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

(a) Show that if $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are increasing sequences in $\mathcal{A}$ such that $\bigcup_{n=1}^{\infty} A_{n} \subseteq$ $\bigcup_{n=1}^{\infty} B_{n}$, then $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \lim _{n \rightarrow \infty} \mu\left(B_{n}\right)$.
(b) Let $\mathcal{G}$ be the collection of all subsets $G$ of $E$ such that there exists an increasing sequence $\left\{A_{n}\right\}$ in $\mathcal{A}$ with $G=\bigcup_{n=1}^{\infty} A_{n}$. Define $\bar{\mu}$ on $\mathcal{G}$ by

$$
\bar{\mu}(G)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

where $\left\{A_{n}\right\}$ is an increasing sequence in $\mathcal{A}$ such that $G=\bigcup_{n=1}^{\infty} A_{n}$. Show the following.
(i) $\bar{\mu}$ is well defined.
(ii) If $G_{1}, G_{2} \in \mathcal{G}$, then $G_{1} \cup G_{2}, G_{1} \cap G_{2} \in \mathcal{G}$ and

$$
\bar{\mu}\left(G_{1} \cup G_{2}\right)+\bar{\mu}\left(G_{1} \cap G_{2}\right)=\bar{\mu}\left(G_{1}\right)+\bar{\mu}\left(G_{2}\right)
$$

