Boedapestlaan 6

3584 CD Utrecht

Measure and Integration extra problems

1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra over \mathbb{R} and λ is Lebesgue measure on $\mathcal{B}(\mathbb{R})$. Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ 2^{-k} & \text{if } x \in [k, k+1), \ k \in \mathbb{Z}, \ k \ge 0. \end{cases}$$

- (a) Show that f is measurable, i.e. $f^{-1}(B) \in \mathcal{B}(\mathbb{R})$ for all $B \in \mathcal{B}(\mathbb{R})$.
- (b) Determine the values of $\lambda(\{f > 1\})$, $\lambda(\{f < 1\})$ and $\lambda(\{1/4 \le f < 1\})$.
- 2. Let (X, \mathcal{B}, μ) be a measure space, and $(A_n)_n \subset \mathcal{B}$ such that $\mu(A_n \cap A_m) = 0$ for $m \neq n$. Show that $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$.
- 3. Let (X, \mathcal{B}, ν) be a measure space, and suppose $X = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a collection of pairwise disjoint measurable sets such that $\nu(E_n) < \infty$ for all $n \geq 1$. Define μ on \mathcal{B} by $\mu(B) = \sum_{n=1}^{\infty} 2^{-n} \nu(B \cap E_n) / (\nu(E_n) + 1)$.
 - (a) Prove that μ is a finite measure on (X, \mathcal{B}) .
 - (b) Let $B \in \mathcal{B}$. Prove that $\mu(B) = 0$ if and only if $\nu(B) = 0$.
- 4. Let (E, \mathcal{B}, μ) be a measure space, and $\overline{\mathcal{B}}^{\mu}$ be the completion of the σ -algebra \mathcal{B} with respect to the measure μ (see exercise 4.13, p.29). We denote by $\overline{\mu}$ the extension of the measure μ to the σ -algebra $\overline{\mathcal{B}}^{\mu}$. Suppose $f: E \to E$ is a function such that $f^{-1}(B) \in \mathcal{B}$ and $\mu(f^{-1}(B)) = \mu(B)$ for each $B \in \mathcal{B}$. Show that $f^{-1}(\overline{B}) \in \overline{\mathcal{B}}^{\mu}$ and $\overline{\mu}(f^{-1}(\overline{B})) = \overline{\mu}(\overline{B})$ for all $\overline{B} \in \overline{\mathcal{B}}^{\mu}$.
- 5. Let X be a set, and $\mathcal{C} \subseteq \mathcal{P}(X)$. Consider $\sigma(\mathcal{C})$, the smallest σ -algebra over X containing \mathcal{C} , and let \mathcal{D} be the collection of sets $A \in \sigma(\mathcal{C})$ with the property that there exists a countable collection $\mathcal{C}_0 \subseteq \mathcal{C}$ (depending on A) such that $A \in \sigma(\mathcal{C}_0)$.
 - (a) Show that \mathcal{D} is a σ -algebra over X.
 - (b) Show that $\mathcal{D} = \sigma(\mathcal{C})$.
- 6. Let E be a set, and \mathcal{A} an algebra over E, i.e. \mathcal{A} contains the empty set, is closed under complements and **finite** unions. Let $\mu : \mathcal{A} \to [0,1]$ be a function satisfying (I) $\mu(E) = 1 = 1 \mu(\emptyset)$,

(II) if $A_1, A_2, \dots, \in \mathcal{A}$ are pairwise disjoint and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$, then

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n).$$

- (a) Show that if $\{A_n\}$ and $\{B_n\}$ are increasing sequences in \mathcal{A} such that $\bigcup_{n=1}^{\infty} A_n \subseteq \bigcup_{n=1}^{\infty} B_n$, then $\lim_{n\to\infty} \mu(A_n) \leq \lim_{n\to\infty} \mu(B_n)$.
- (b) Let \mathcal{G} be the collection of all subsets G of E such that there exists an increasing sequence $\{A_n\}$ in \mathcal{A} with $G = \bigcup_{n=1}^{\infty} A_n$. Define $\overline{\mu}$ on \mathcal{G} by

$$\overline{\mu}(G) = \lim_{n \to \infty} \mu(A_n),$$

where $\{A_n\}$ is an increasing sequence in \mathcal{A} such that $G = \bigcup_{n=1}^{\infty} A_n$. Show the following.

- (i) $\overline{\mu}$ is well defined.
- (ii) If $G_1, G_2 \in \mathcal{G}$, then $G_1 \cup G_2, G_1 \cap G_2 \in \mathcal{G}$ and

$$\overline{\mu}(G_1 \cup G_2) + \overline{\mu}(G_1 \cap G_2) = \overline{\mu}(G_1) + \overline{\mu}(G_2).$$