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Measure and Integration 2006-Selected Solutions Chapter 11

1. (p.100, exercise 11.1) Let (X,A, µ) be a measure space, and (uj) a sequence
of measrable real valued functions such that limj→∞ uj(x) = u(x) for all x ∈ X.
Suppose that |uj| ≤ g for some measurable function g such that gp ∈ L1

+, p > 0.
Show that limj→∞

∫

|uj − u|p dµ = 0.

Proof: First notice that for any a, b ∈ R, one has

|a − b|p ≤ (|a| + |b|)p ≤ (2 max(|a|, |b|))p = 2p max(|a|p, |b|p) ≤ 2p(|a|p + |b|p).
Applying this fact to our sequence, we see that |uj(x)−u(x)|p ≤ 2pgp(x) (note that
|uj| ≤ g implies |u| ≤ g), and gp is a non-negative integrable function. Furthermore,
limj→∞ |uj − u|p = 0, hence by Lebesgue Dominated Convergence Theorem,

lim
j→∞

∫

|uj − u|p dµ =

∫

lim
j→∞

|uj − u|p dµ = 0.

2. (p.100, exercise 11.3) Let (fk), (gk) and (Gk) be sequences of integrable functions
on a measure space (X,A, µ). If

(i) limk→∞ fk(x) = f(x), limk→∞ gk(x) = g(x) and limk→∞ Gk(x) = G(x) for all
x ∈ X,

(ii) gk(x) ≤ fk(x) ≤ Gk(x) for all k ≥ 1 and all x ∈ X,

(iii) limk→∞
∫

gk dµ =
∫

g dµ, limk→∞
∫

Gk dµ =
∫

G dµ < and both
∫

g dµ and
∫

G dµ are finite,

then, limk→∞
∫

fk dµ =
∫

f dµ and
∫

f dµ is finite.

Proof: By assumption 0 ≤ fk − gk → f − g and 0 ≤ Gk − fk → G− f . By Fatou’s
Lemma we have

∫

(f − g) dµ =
∫

limk→∞(fk − gk) dµ
=

∫

lim infk→∞(fk − gk) dµ
≤ lim infk→∞

∫

(fk − gk) dµ
≤ lim infk→∞

∫

fk dµ − lim supk→∞
∫

gk dµ
= lim infk→∞

∫

fk dµ −
∫

g dµ.

Subtracting
∫

g dµ(< ∞) from both sides of the inequality, we get
∫

f dµ ≤ lim infk→∞
∫

fk dµ. On the other hand,
∫

(G − f) dµ =
∫

limk→∞(Gk − fk) dµ
=

∫

lim infk→∞(Gk − fk) dµ
≤ lim infk→∞

∫

(Gk − fk) dµ
≤ lim infk→∞

∫

Gk dµ − lim supk→∞
∫

fk dµ
=

∫

G dµ − lim supk→∞
∫

fk dµ.
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Subtracting
∫

G dµ(< ∞) from both sides of the inequality we get lim supk→∞
∫

fk dµ ≤
∫

f dµ ≤ lim infk→∞
∫

fk dµ. Thus,
∫

f dµ = limk→∞
∫

fk dµ and
∫

g dµ ≤
∫

f dµ ≤
∫

G dµ, hence
∫

f dµ is finite.

3. (p.100, exercise 11.4) Let (X,A, µ) be a measure space, and let (gn) be a sequence
of µ-integrable functions on X such that

∑∞
n=1

∫

| gn| dµ < ∞. Show that
∑∞

n=1 gn is

finite µ a.e, and
∫ ∞

∑

n=1

gn dµ =
∞

∑

n=1

∫

gn dµ.

proof (b): By part Corollary 9.9,
∫

∑∞
n=1 |gn| dµ =

∑∞
n=1

∫

|gn| dµ < ∞, hence
∑∞

n=1 |gn| is µ-integrable. We show that u =
∑∞

n=1 |gn| is finite µ a.e. (see
also the proof of Corollary 10.13). Let N = {x ∈ X : u(x) = ∞}. Then
N =

⋂∞
n=1{u ≥ n}. Since the sequence of measurable sets {u ≥ n} is decreasing

and by the Markov inequality each has finite measure, then µ(N) = limn→∞ µ({u ≥
n}) = limn→∞

1
n

∫

u dµ = 0. Thus, u =
∑∞

n=1 |gn| is finite µ a.e. Since |
∑∞

n=1 gn| ≤
∑∞

n=1 |gn|, it follows that
∑∞

n=1 gn is finite µ a.e. Let hn =
∑n

m=1 gm, then (hm)
converges to

∑∞
n=1 gn µ a.e. Furthermore, |hn| ≤

∑∞
n=1 |gn|, thus by the Dominated

Convergence Theorem,

∞
∑

n=1

∫

gn dµ = lim
n→∞

∫

hn dµ =

∫

lim
n→∞

hn dµ =

∫ ∞
∑

n=1

gn dµ.

4. (p.100, exercise 11.6) Give an example of a sequence (uj) of integrable func-
tions such that uj(x) → u(x) for all x where u is an integrable function, but
limj→∞

∫

uj dµ 6=
∫

u dµ. Why doesn’t this contradict the Lebesgue Dominated
Convergence Theorem?

Proof: Consider the measure space (R,B(R), λ) with B(R) the Borel σ-algebra, and
λ the Lebesgue measure. Let uj(x) = j1(0,1/j)(x), j ≥ 1. Clearly, limj→∞ uj(x) = 0
for all x ∈ R, and

lim
j→∞

∫

uj dλ = lim
j→∞

jλ((0, 1/j)) = lim
j→∞

j
1

j
= 1,

while
∫

lim
j→∞

uj dλ =

∫

0 dλ = 0.

This does not contradict the Lebesgue Dominated Convergence Theorem because
the sequence (uj) is not bounded by an integrable function.

5. (p.100, exercise 11.8) Check whether the following functions are Lebesgue inte-
grable:

(i) u(x) =
1

x
, x ∈ [1,∞), (ii) v(x) =

1

x2
, x ∈ [1,∞),

(iii) w(x) =
1√
x
, x ∈ (0, 1], (iv) y(x) =

1

x
, x ∈ (0, 1].
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Proof: The functions in (i) and (iv) are not Lebesgue integrable, while the functions
in (ii) and (iii) are Lebesgue integrable. We will prove (i) and (iii) only. The proofs
of (ii) and (iv) are similar.

Notice that u(x) = 1
x
1[1,∞)(x), and u(x) = supn

1
x
1[1,n)(x). Since the function

1
x
1[1,n)(x) is Riemann integrable, then it is also Lebesgue integrable and the Riemann

integral equals the Lebesgue integral (Theorem 11.8). Thus, by Beppo-Levi,

∫

u(x) dλ(x) = lim
n→∞

∫

1

x
1[1,n)(x) dλ(x) = lim

n→∞

∫ n

1

1

x
dx = lim

n→∞
(log n − log 1) = ∞.

Thus, u is not Lebesgue integrable.

Now consider the function w(x) =
1√
x
1(0,1], and notice that w(x) = supn

1√
x
1[1/n,1]

where ( 1√
x
1[1/n,1]) is an increasing sequence of Riemann integrable functions. Hence,

by Beppo-Levi,

∫

w(x) dλ(x) = lim
n→∞

∫

1√
x
1[1/n,1], dλ(x) = lim

n→∞

∫ 1

1/n

1√
x

dx = lim
n→∞

(2−2
√

1/n) = 2 < ∞.

Thus, w is Lebesgue integrable.

If all the intervals are replaced by [1/2, 2], then all fuctions under consideration
(u, v, w, y) are Riemann integrable and therefore Lebesgue integrable.

6. (p.100, exercise 11.12(i)) Let λ be the one-dimensional Lebesgue measure. Prove
that

∫

(1,∞)

e−x ln(x) dλ(x) = lim
k→∞

∫

(1,k)

(

1 − x

k

)k

ln(x) dλ(x).

Proof: It is easy to see that for any 0 < x < 1, one has ln(1− x) < −x (why?), i.e.
(1 − x) < e−x. Hence, for any k ≥ 1 we have (notice that ln(x) ≤ x on (1,∞))

1(1,k)(x)
(

1 − x

k

)k

ln(x) ≤ 1(1,k)(x)e−x ln(x) ≤ 1(1,∞)(x)e−x ln(x) ≤ 1(1,∞)(x)xe−x.

It is easy to see that the function 1(1,∞)(x)xe−x is Riemann integrable, and hence is

Lebesgue integrable. Furthermore, limk→∞ 1(1,k)(x)
(

1 − x
k

)k
ln(x) = 1(1,∞)(x)e−x ln(x),

thus by the Lebesgue Dominated Convergence Theorem we have

∫

(1,∞)
e−x ln(x) dλ(x) =

∫

1(1,∞)(x)e−x ln(x) dλ(x)

=
∫

limk→∞ 1(1,k)(x)
(

1 − x
k

)k
ln(x) dλ(x)

= limk→∞
∫

1(1,k)(x)
(

1 − x
k

)k
ln(x) dλ(x)

= limk→∞
∫

(1,k)
(x)

(

1 − x
k

)k
ln(x) dλ(x).

3


