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Measure and Integration 2007-More Selected Solutions Chapter 11

1. (p.100, exercise 11.8) Check whether the following functions are Lebesgue inte-
grable:

(i) u(x) =
1

x
, x ∈ [1,∞), (ii) v(x) =

1

x2
, x ∈ [1,∞),

(iii) w(x) =
1√
x
, x ∈ (0, 1], (iv) y(x) =

1

x
, x ∈ (0, 1].

Proof: The functions in (i) and (iv) are not Lebesgue integrable, while the functions
in (ii) and (iii) are Lebesgue integrable. We will prove (i) and (iii) only. The proofs
of (ii) and (iv) are similar.

Notice that u(x) = 1
x
1[1,∞)(x), and u(x) = supn

1
x
1[1,n](x). Since the function

1
x
1[1,n](x) is Riemann integrable, then it is also Lebesgue integrable and the Rie-

mann integral equals the Lebesgue integral (Theorem 11.8). Thus, by Beppo-Levi,∫
u(x) dλ(x) = lim

n→∞

∫
1

x
1[1,n](x) dλ(x) = lim

n→∞

∫ n

1

1

x
dx = lim

n→∞
(log n− log 1) = ∞.

Thus, u is not Lebesgue integrable.

Now consider the function w(x) =
1√
x
1(0,1], and notice that w(x) = supn

1√
x
1[1/n,1]

where ( 1√
x
1[1/n,1]) is an increasing sequence of Riemann integrable functions. Hence,

by Beppo-Levi,∫
w(x) dλ(x) = lim

n→∞

∫
1√
x
1[1/n,1], dλ(x) = lim

n→∞

∫ 1

1/n

1√
x

dx = lim
n→∞

(2−2
√

1/n) = 2 < ∞.

Thus, w is Lebesgue integrable.

If all the intervals are replaced by [1/2, 2], then all fuctions under consideration
(u, v, w, y) are Riemann integrable and therefore Lebesgue integrable.

2. (p.100, exercise 11.12(i)) Let λ be the one-dimensional Lebesgue measure. Prove
that ∫

(1,∞)

e−x ln(x) dλ(x) = lim
k→∞

∫
(1,k)

(
1− x

k

)k

ln(x) dλ(x).

Proof: It is easy to see that for any 0 < x < 1, one has ln(1− x) < −x (why?), i.e.
(1− x) < e−x. Hence, for any k ≥ 1 we have (notice that ln(x) ≤ x on (1,∞))

1(1,k)(x)
(
1− x

k

)k

ln(x) ≤ 1(1,k)(x)e−x ln(x) ≤ 1(1,∞)(x)e−x ln(x) ≤ 1(1,∞)(x)xe−x.
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It is easy to see that the function 1(1,∞)(x)xe−x is Riemann integrable, and hence is

Lebesgue integrable. Furthermore, limk→∞ 1(1,k)(x)
(
1− x

k

)k
ln(x) = 1(1,∞)(x)e−x ln(x),

thus by the Lebesgue Dominated Convergence Theorem we have∫
(1,∞)

e−x ln(x) dλ(x) =
∫

1(1,∞)(x)e−x ln(x) dλ(x)

=
∫

limk→∞ 1(1,k)(x)
(
1− x

k

)k
ln(x) dλ(x)

= limk→∞
∫

1(1,k)(x)
(
1− x

k

)k
ln(x) dλ(x)

= limk→∞
∫

(1,k)
(x)

(
1− x

k

)k
ln(x) dλ(x).

3. (p.100, exercise 15) In the book there are some typos, here is the correct
version. Let X be a non-negative random variable on a probability space (Ω,A, P ).
The function ΦX(t) =

∫
e−tXdP , t ≥ 0, is called the moment generating function of

X. Suppose
∫

Xm dP < ∞.

(a) Show that for all 0 ≤ k ≤ m,∫
Xk dP = lim

t↓0
(−1)k dk

dtk
ΦX(t).

(b) Show that ΦX(t) =
∑m−1

k=0 (−1)ktk
∫

Xk

k!
dP + o(tm).

(c) Show that for all t ≥ 0,

|ΦX(t)−
m∑

k=0

(−1)ktk
∫

Xk

k!
dP | ≤ tm

m!

∫
Xm dP.

(d) Suppose that
∫

Xk dP < ∞ for all k ≥ 1. Show that for any t ≥ 0 such that∑m
k=0(−1)ktk

∫
Xk

k!
dP < ∞, one has ΦX(t) =

∑∞
k=0(−1)ktk

∫
Xk

k!
dP .

Proof(a): First notice that for any k ≤ m,∫
Xk dP =

∫
{X>1}

Xk dP +

∫
{X≤1}

Xk dP ≤
∫
{X>1}

Xm dP + 1 < ∞.

So that
∫

Xk ∈ L1(P ), 1 ≤ k ≤ m. Further, the function u(t, ω) = e−tX(ω) is m
times differentiable in t, and

|∂
ku

tk
(t, ω)| = |(−1)kXk(ω)e−tX(ω)| ≤ Xk ∈ L1(P ).

It is easily checked that the hypothesis of Theorem 11.5 are satisfied when applied
repeatedly to the functions ∂ku

tk
for 1 ≤ k ≤ m. Hence, for each 1 ≤ k ≤ m,

dkΦX

dtk
(t) =

∫
dke−tX

dtk
dP =

∫
(−1)kXke−tX dP.
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Therefore, by Theorem 11.4,

lim
t↓0

(−1)k dkΦX

dtk
(t) =

∫
Xk dP.

Proof(b): Since e−tX , Xk ∈ L1(P ), for 1 ≤ k ≤ m and all t ≥ 0, we have that

ΦX(t)−
m−1∑
k=0

(−1)ktk
∫

Xk

k!
dP =

∫
(e−tX −

m−1∑
k=0

(−1)ktk
∫

Xk

k!
) dP < ∞.

This implies that
∫ ∑∞

k=m+1(−1)ktk
∫

Xk

k!
) dP < ∞, and hence∫ ∞∑

k=m+1

(−1)ktk
∫

Xk

k!
) dP = o(tm).

This proves the result.

Proof(c): We first remark that for any u ≥ 0 and any m, one has

|e−u −
m∑

k=0

(−u)k

k!
| ≤ um

m!
.

This can be proven easily with the help of induction and the following equality

|e−u −
m∑

k=0

(−u)k

k!
| = |

∫ u

0

(e−y −
m−1∑
k=0

(−y)k

k!
) dy|.

Using the above with u = tX, we have

|ΦX(t)−
∑m

k=0(−1)ktk
∫

Xk

k!
dP | ≤

∫
|e−tX −

∑m
k=0(−1)ktk Xk

k!
| dP

≤ tm

m!

∫
Xm dP.

Proof(d): Suppose that
∑m

k=0(−1)ktk
∫

Xk

k!
dP < ∞, then

lim
m→∞

|(−1)mtm
∫

Xm

m!
dP | = 0.

Hence, by part (c) the result follows.
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