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1. (Exercise 13.4, p.131) Denote by λ Lebesgue measure on (0, 1). Show that the
following iterated integrals exist, but yield different values:

∫
(0,1)

∫
(0,1)

x2 − y2

(x2 + y2)2
dλ(x)dλ(y) 6=

∫
(0,1)

∫
(0,1)

x2 − y2

(x2 + y2)2
dλ(y)dλ(x).

What does this tell about the (λ × λ)-integral of the function x2−y2

(x2+y2)2
?

Proof: Notice that for each fixed y ∈ (0, 1), the function x → x2−y2

(x2+y2)2
is continuous,

and is Riemann integrable on [0, 1] since

∫ 1

0

x2 − y2

(x2 + y2)2
dx = −

x

(x2 + y2)
|10 = −

1

1 + y2
.

Furthermore, the function y → − 1
1+y2 is continuous and Riemann integrable on [0, 1]

since ∫ 1

0

−
1

1 + y2
dy = − tan y|10 = −

π

4
.

Thus,

∫
(0,1)

∫
(0,1)

x2 − y2

(x2 + y2)2
dλ(x)dλ(y) =

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dx dy = −

π

4
.

Similar analysis shows that

∫
(0,1)

∫
(0,1)

x2 − y2

(x2 + y2)2
dλ(y)dλ(x) =

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx =

π

4
.

Thus the two iterated integrals are not equal. This implies that the function (x, y) →
x2−y2

(x2+y2)2
is not (Lebesgue) λ×λ integrable on (0, 1)×(0, 1), otherwise the two integrals

would be equal. In fact,

∫ 1

0

∫ 1

0
| x2−y2

(x2+y2)2
| dy dx ≥

∫ 1

0

∫ x

0
x2−y2

(x2+y2)2
dy dx

=
∫ 1

0
1
2x

= ∞.

2. (Exercise 13.7, p.131) Consider ([0, 1],B, λ), where B is the Borel σ-algebra on
[0, 1], λ is Lebesgue measure and µ is counting measure (i.e. µ(A) = number of
elements in A). Let ∆ = {x, y) ∈ [0, 1] × [0, 1] : x = y}, show that

∫
[0,1]

∫
[0,1]

1∆(x, y)dλ(x)dµ(y) 6=

∫
[0,1]

∫
[0,1]

1∆(x, y)dµ(y)dλ(x).

1



Why does not this violate Tonelli’s Theorem?

Proof For any x, y ∈ [0, 1], ∆x = {y ∈ [0, 1] : (x, y) ∈ ∆} = {x}, and ∆y = {x ∈
[0, 1] : (x, y) ∈ ∆} = {y}. Thus, µ (∆x) = µ (∆y) = 1 and λ (∆x) = λ (∆y) = 0.
Furthermore,

1∆(x, y) = 1 ⇔ 1∆x
(y) = 1 ⇔ 1∆y

(x) = 1.

Hence, ∫
[0,1]

∫
[0,1]

1∆(x, y)dλ(x)dµ(y) =

∫
[0,1]

λ(∆y)dµ(y) = 0,

and ∫
[0,1]

∫
[0,1]

1∆(x, y)dµ(y)dλ(x) =

∫
[0,1]

µ(∆x)dλ(x) = λ([0, 1]) = 1.

The reason why Tonelli’s Theorem does not hold is because the measure µ is not
σ-finite.

3. Suppose (X,A, µ) and (Y,B, ν) are σ-finite measure spaces. Let f : X → [0,∞),
g : Y → [0,∞) be A/B(R) respectively B/B(R) measurable functions. Define
h : X × Y → [0,∞) by h(x, y) = f(x)g(y).

(i) Show that h is A⊗ B/B(R) measurable.

(ii) Prove that
∫

X×Y
h(x, y) d(µ × ν)(x, y) =

∫
X

f(x) dµ(x) ·
∫

Y
g(y) dν(y).

Proof (i) Define f : X × Y → [0,∞) by f(x, y) = f(x) and g : X × Y → [0,∞) by
g(x, y) = g(y). Then f and g are A⊗ B/B(R) measurable since for any B ∈ B(R),

we have f
−1

(B) = f−1(B) × Y ∈ A⊗ B and g−1(B) = X × g−1(B) ∈ A⊗ B. Now,
h(x, y) = f(x)g(y) = f(x, y)g(x, y) is the product of two A ⊗ B/B(R) measurable
functions, hence h is A⊗ B/B(R) measurable.

Proof (ii) Since h ≥ 0 is measurable, then by Tonelli’s Theorem
∫

X×Y

h(x, y) d(µ×ν)(x, y) =

∫
X

∫
Y

f(x)g(y) dν(y) dµ(x) =

∫
X

f(x) dµ(x)·

∫
Y

g(y) dν(y)

4. Let 0 < a < b. Prove with the help of Tonelli’s theorem (applied to the function

f(x, y) = e−xt) that
∫
[0,∞)

(e−at − e−bt)
1

t
dλ(t) = log(b/a), where λ denotes Lebesgue

measure.

Proof: Let f : [a, b] × [0,∞) be given by f(x, y) = e−xt. Then f is continuous
(hence measurable) and f > 0. By Toneli’s theorem

∫
[0,∞)

∫
[a,b]

e−xtdλ(x) dλ(t) =

∫
[a,b]

∫
[0,∞)

e−xtdλ(t) dλ(x).

For each t ∈ [0,∞), the function x → e−xt is Riemann integrable on [a, b], hence by
Theorem 11.8(i),

∫
[a,b]

e−xtdλ(x) =

∫ b

a

e−xtdx = (e−at − e−bt)
1

t
.
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Thus, ∫
[0,∞)

∫
[a,b]

e−xtdλ(x) dλ(t) =

∫
[0,∞)

(e−at − e−bt)
1

t
dλ(t).

On the other hand, for each x ∈ [a, b],

lim
c→∞

∫ c

0

e−xt dt =
1

x
,

hence by Corollary 11.9,
∫
[0,∞)

e−xtdλ(t) = 1
x
. Furthermore, the function 1

x
is Rie-

mann integrable on [a, b], hence

∫
[a,b]

∫
[0,∞)

e−xtdλ(t) dλ(x) =

∫ b

a

1

x
dx = log(b/a).

Therefore,
∫
[0,∞)

(e−at − e−bt)
1

t
dλ(t) = log(b/a).

5. (Exercise 13.9, p.131) Let u : R → [0,∞) be a Borel measurable function (there
is a misprint in the book in the definition of u). Denote by S[u] = {(x, y) ∈ R

2 :
0 ≤ y ≤ u(x)} and Γ[u] = {(x, u(x)) : x ∈ R}.

(i) Show that S[u] ∈ B(R2).

(ii) Is λ2(S[u]) =
∫

u dλ?

(iii) Show that Γ[u] ∈ B(R2) and that λ2(Γ[u]) = 0.

Proof(i): Define W : R
2 → R

2 by W (x, y) = (u(x), y). By Theorem 13.10(ii), W is
B(R2)/B(R2) measurable (or simply notice that W−1([a, b) × [c, d)) = u−1([a, b)) ×
[c, d) ∈ B(R2)). Let U : R

2 → R be given by U(x, y) = x−y, then U is B(R2)/B(R)
measurable, and hence the composition U ◦ W (x, y) = U(u(x), y) = u(x) − y is
B(R2)/B(R) measurable. Finally,

S[u] = (R × [0,∞)) ∩ (U ◦ W )−1[0,∞) ∈ B(R2).

Proof(ii): The answer is yes. To see that, notice that for each fixed x ∈ R, one has

1S[u](x, y) = 1 ⇔ y ∈ [0, u(x)] ⇔ 1[0,u(x)](y) = 1.

Thus, by Tonelli’s Theorem (or Theorem 13.5), we have

λ2(S[u]) =
∫

R2 1S[u](x, y) dλ2(x, y)

=
∫

R2

∫
R2 1S[u](x, y) dλ(y) dλ(x)

=
∫

R2

∫
R2 1[0,u(x)](y) dλ(y) dλ(x)

=
∫

R2 λ([0, u(x)]) dλ(x)

=
∫

R2 u(x) dλ(x).
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Proof(iii): We use the same notation as in part (i).

Γ[u] = (U ◦ W )−1({0}) ∈ B(R2).

Notice that for each fixed x,

1Γ[u](x, y) = 1 ⇔ y = u(x) ⇔ 1{u(x)}(y) = 1.

Thus,
λ2(S[u]) =

∫
R2 1Γ[u](x, y) dλ2(x, y)

=
∫

R2

∫
R2 1Γ[u](x, y) dλ(y) dλ(x)

=
∫

R2

∫
R2 1{u(x)}(y) dλ(y) dλ(x)

=
∫

R2 λ({u(x)}) dλ(x) = 0.
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