Measure and Integration 2006-Selected Solutions 13+extra exercises

1. (Exercise 13.4, p.131) Denote by λ Lebesgue measure on $(0,1)$. Show that the following iterated integrals exist, but yield different values:

$$
\int_{(0,1)} \int_{(0,1)} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d \lambda(x) d \lambda(y) \neq \int_{(0,1)} \int_{(0,1)} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d \lambda(y) d \lambda(x) .
$$

What does this tell about the $(\lambda \times \lambda)$-integral of the function $\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$?
Proof: Notice that for each fixed $y \in(0,1)$, the function $x \rightarrow \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ is continuous, and is Riemann integrable on $[0,1]$ since

$$
\int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x=-\left.\frac{x}{\left(x^{2}+y^{2}\right)}\right|_{0} ^{1}=-\frac{1}{1+y^{2}} .
$$

Furthermore, the function $y \rightarrow-\frac{1}{1+y^{2}}$ is continuous and Riemann integrable on $[0,1]$ since

$$
\int_{0}^{1}-\frac{1}{1+y^{2}} d y=-\left.\tan y\right|_{0} ^{1}=-\frac{\pi}{4}
$$

Thus,

$$
\int_{(0,1)} \int_{(0,1)} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d \lambda(x) d \lambda(y)=\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x d y=-\frac{\pi}{4} .
$$

Similar analysis shows that

$$
\int_{(0,1)} \int_{(0,1)} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d \lambda(y) d \lambda(x)=\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y d x=\frac{\pi}{4}
$$

Thus the two iterated integrals are not equal. This implies that the function $(x, y) \rightarrow$ $\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ is not (Lebesgue) $\lambda \times \lambda$ integrable on $(0,1) \times(0,1)$, otherwise the two integrals would be equal. In fact,

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1}\left|\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right| d y d x & \geq \int_{0}^{1} \int_{0}^{x} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y d x \\
& =\int_{0}^{1} \frac{1}{2 x}=\infty .
\end{aligned}
$$

2. (Exercise 13.7, p.131) Consider $([0,1], \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ-algebra on $[0,1], \lambda$ is Lebesgue measure and μ is counting measure (i.e. $\mu(A)=$ number of elements in A). Let $\Delta=\{x, y) \in[0,1] \times[0,1]: x=y\}$, show that

$$
\int_{[0,1]} \int_{[0,1]} 1_{\Delta}(x, y) d \lambda(x) d \mu(y) \neq \int_{[0,1]} \int_{[0,1]} 1_{\Delta}(x, y) d \mu(y) d \lambda(x) .
$$

Why does not this violate Tonelli's Theorem?
Proof For any $x, y \in[0,1], \Delta_{x}=\{y \in[0,1]:(x, y) \in \Delta\}=\{x\}$, and $\Delta_{y}=\{x \in$ $[0,1]:(x, y) \in \Delta\}=\{y\}$. Thus, $\mu\left(\Delta_{x}\right)=\mu\left(\Delta_{y}\right)=1$ and $\lambda\left(\Delta_{x}\right)=\lambda\left(\Delta_{y}\right)=0$. Furthermore,

$$
1_{\Delta}(x, y)=1 \Leftrightarrow 1_{\Delta_{x}}(y)=1 \Leftrightarrow 1_{\Delta_{y}}(x)=1
$$

Hence,

$$
\int_{[0,1]} \int_{[0,1]} 1_{\Delta}(x, y) d \lambda(x) d \mu(y)=\int_{[0,1]} \lambda\left(\Delta_{y}\right) d \mu(y)=0
$$

and

$$
\int_{[0,1]} \int_{[0,1]} 1_{\Delta}(x, y) d \mu(y) d \lambda(x)=\int_{[0,1]} \mu\left(\Delta_{x}\right) d \lambda(x)=\lambda([0,1])=1 .
$$

The reason why Tonelli's Theorem does not hold is because the measure μ is not σ-finite.
3. Suppose (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ-finite measure spaces. Let $f: X \rightarrow[0, \infty)$, $g: Y \rightarrow[0, \infty)$ be $\mathcal{A} / \mathcal{B}(\mathbb{R})$ respectively $\mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable functions. Define $h: X \times Y \rightarrow[0, \infty)$ by $h(x, y)=f(x) g(y)$.
(i) Show that h is $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable.
(ii) Prove that $\int_{X \times Y} h(x, y) d(\mu \times \nu)(x, y)=\int_{X} f(x) d \mu(x) \cdot \int_{Y} g(y) d \nu(y)$.

Proof (i) Define $\bar{f}: \underline{X} \times Y \rightarrow[0, \infty)$ by $\bar{f}(x, y)=f(x)$ and $\bar{g}: X \times Y \rightarrow[0, \infty)$ by $\bar{g}(x, y)=g(y)$. Then \bar{f} and \bar{g} are $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable since for any $B \in \mathcal{B}(\mathbb{R})$, we have $\bar{f}^{-1}(B)=f^{-1}(B) \times Y \in \mathcal{A} \otimes \mathcal{B}$ and $\bar{g}^{-1}(B)=X \times g^{-1}(B) \in \mathcal{A} \otimes \mathcal{B}$. Now, $h(x, y)=f(x) g(y)=\bar{f}(x, y) \bar{g}(x, y)$ is the product of two $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable functions, hence h is $\mathcal{A} \otimes \mathcal{B} / \mathcal{B}(\mathbb{R})$ measurable.

Proof (ii) Since $h \geq 0$ is measurable, then by Tonelli's Theorem
$\int_{X \times Y} h(x, y) d(\mu \times \nu)(x, y)=\int_{X} \int_{Y} f(x) g(y) d \nu(y) d \mu(x)=\int_{X} f(x) d \mu(x) \cdot \int_{Y} g(y) d \nu(y)$
4. Let $0<a<b$. Prove with the help of Tonelli's theorem (applied to the function $\left.f(x, y)=e^{-x t}\right)$ that $\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)=\log (b / a)$, where λ denotes Lebesgue measure.

Proof: Let $f:[a, b] \times[0, \infty)$ be given by $f(x, y)=e^{-x t}$. Then f is continuous (hence measurable) and $f>0$. By Toneli's theorem

$$
\int_{[0, \infty)} \int_{[a, b]} e^{-x t} d \lambda(x) d \lambda(t)=\int_{[a, b]} \int_{[0, \infty)} e^{-x t} d \lambda(t) d \lambda(x) .
$$

For each $t \in[0, \infty)$, the function $x \rightarrow e^{-x t}$ is Riemann integrable on $[a, b]$, hence by Theorem 11.8(i),

$$
\int_{[a, b]} e^{-x t} d \lambda(x)=\int_{a}^{b} e^{-x t} d x=\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} .
$$

Thus,

$$
\int_{[0, \infty)} \int_{[a, b]} e^{-x t} d \lambda(x) d \lambda(t)=\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)
$$

On the other hand, for each $x \in[a, b]$,

$$
\lim _{c \rightarrow \infty} \int_{0}^{c} e^{-x t} d t=\frac{1}{x}
$$

hence by Corollary 11.9, $\int_{[0, \infty)} e^{-x t} d \lambda(t)=\frac{1}{x}$. Furthermore, the function $\frac{1}{x}$ is Riemann integrable on $[a, b]$, hence

$$
\int_{[a, b]} \int_{[0, \infty)} e^{-x t} d \lambda(t) d \lambda(x)=\int_{a}^{b} \frac{1}{x} d x=\log (b / a) .
$$

Therefore, $\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)=\log (b / a)$.
5. (Exercise 13.9, p.131) Let $u: \mathbb{R} \rightarrow[0, \infty)$ be a Borel measurable function (there is a misprint in the book in the definition of $u)$. Denote by $S[u]=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $0 \leq y \leq u(x)\}$ and $\Gamma[u]=\{(x, u(x)): x \in \mathbb{R}\}$.
(i) Show that $S[u] \in \mathcal{B}\left(\mathbb{R}^{2}\right)$.
(ii) Is $\lambda^{2}(S[u])=\int u d \lambda$?
(iii) Show that $\Gamma[u] \in \mathcal{B}\left(\mathbb{R}^{2}\right)$ and that $\lambda^{2}(\Gamma[u])=0$.
$\operatorname{Proof}(\mathbf{i}):$ Define $W: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $W(x, y)=(u(x), y)$. By Theorem 13.10(ii), W is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}\left(\mathbb{R}^{2}\right)$ measurable (or simply notice that $W^{-1}([a, b) \times[c, d))=u^{-1}([a, b)) \times$ $\left.[c, d) \in \mathcal{B}\left(\mathbb{R}^{2}\right)\right)$. Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $U(x, y)=x-y$, then U is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable, and hence the composition $U \circ W(x, y)=U(u(x), y)=u(x)-y$ is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable. Finally,

$$
S[u]=(\mathbb{R} \times[0, \infty)) \cap(U \circ W)^{-1}[0, \infty) \in \mathcal{B}\left(\mathbb{R}^{2}\right)
$$

Proof(ii): The answer is yes. To see that, notice that for each fixed $x \in \mathbb{R}$, one has

$$
\mathbf{1}_{S[u]}(x, y)=1 \Leftrightarrow y \in[0, u(x)] \Leftrightarrow \mathbf{1}_{[0, u(x)]}(y)=1 .
$$

Thus, by Tonelli's Theorem (or Theorem 13.5), we have

$$
\begin{aligned}
\lambda^{2}(S[u]) & =\int_{\mathbb{R}^{2}} \mathbf{1}_{S[u]}(x, y) d \lambda^{2}(x, y) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{S[u]}(x, y) d \lambda(y) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{[0, u(x)]}(y) d \lambda(y) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} \lambda([0, u(x)]) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} u(x) d \lambda(x) .
\end{aligned}
$$

$\operatorname{Proof}(\mathrm{iii})$: We use the same notation as in part (i).

$$
\Gamma[u]=(U \circ W)^{-1}(\{0\}) \in \mathcal{B}\left(\mathbb{R}^{2}\right) .
$$

Notice that for each fixed x,

$$
\mathbf{1}_{\Gamma[u]}(x, y)=1 \Leftrightarrow y=u(x) \Leftrightarrow \mathbf{1}_{\{u(x)\}}(y)=1 .
$$

Thus,

$$
\begin{aligned}
\lambda^{2}(S[u]) & =\int_{\mathbb{R}^{2}} \mathbf{1}_{\Gamma[u]}(x, y) d \lambda^{2}(x, y) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{\Gamma[u]}(x, y) d \lambda(y) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{\{u(x)\}}(y) d \lambda(y) d \lambda(x) \\
& =\int_{\mathbb{R}^{2}} \lambda(\{u(x)\}) d \lambda(x)=0 .
\end{aligned}
$$

